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A ⊂ Form, ||α|| -length of α

We associate the density µ(A) with a subset A of formulas as:

µ(A) = lim
n→∞

card {α ∈ A : ||α|| = n}
card {α ∈ Form : ||α|| = n}

if the appropriate limit exists.

If A is the set of tautologies of a given logic, then µ(A) is called

the density of truth of this logic.
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Densities of some fragments of classical, intuitionistic and modal

logics:

µ(Cl→p,q) ≈ 51.9%

µ(Int→p,q) ≈ 50.43%

[1] Z.K., On the density of implicational parts of intuitionistic and

classical logics, Journal of Applied Non-Classical Logics, Vol. 13,

Number 3, 2003, pp. 295-325.

µ(Cl→,¬
p ) ≈ 42.3%

µ(Int→,¬
p ) ≈ 39.5%

[2] Z. K., M. Zaionc, Statistics of intuitionistic versus classical

logics, SL, Vol. 76, Number 3, 2004, pp. 307 - 328.
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µ(Cl∧,∨p,¬p) ≈ 28.8%

µ(Cl∧,∨p,q,¬p,¬q) ≈ 20.9%

[3] D. Gardy and A.R. Woods, And/or tree probabilities of Boolean

functions, DMTCS, 2005, pp. 139-146.

µ(S5→,�
p ) ≈ 60.81%

µ(Grz→,�
p ) < 60.88%

[4] Z.K., On the density of truth in modal logics, DMTCS 2006,

pp. 161-170.
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Negative examples:

µ(Cl↔p ),

µ(Cl↔p,q),

µ(Cl↔,¬
p ),

µ(Cl↔,¬
p,q )

[5] Z.K., On asymptotic divergency in equivalential logics,

Mathematical Structures in Comp. Science, vol. 18, 2008, pp.1-14.
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Lindenbaum’s algebras
Form – set of all formulas in the given language with →, ∧, ∨, ↔
L – propositional logic, TL – set of theorems of the logic L.

Definition of an equivalence relation in Form:

α ≡ β iff α↔ β ∈ TL

for any α, β ∈ Form.

≡ is a congruence, which means that for any unary functor ∗ and
any binary functor � it holds:

If α ≡ β then ∗ α ≡ ∗β,

If α ≡ β and γ ≡ δ then α� γ ≡ β � δ.
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[α]≡ – equivalence class of the relation: [α]≡ := {β : β ≡ α}.
AL(L) := {[α]≡ : α ∈ Form} – Lindenbaum’s algebra

Definition of order in AL(L):

[α]≡ ≤ [β]≡ iff (α→ β) ∈ TL.

In the ordered set ({[α]≡ : α ∈ Form},≤) there exists the

supremum [α]≡ ∪ [β]≡ = [α ∨ β]≡

and the infimum [α]≡ ∩ [β]≡ = [α ∧ β]≡, thus, this set forms a

lattice.

In the case of classical logic, the obtained lattice is a Boolean one,

whereas in the case of intuitionistic logic we get a Heyting algebra.

In the cases of modal logics, we obtain modal algebras, and so on.
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Examples

The classical logic Cl→,¬
1 . Lindenbaum’s algebra

AL(Cl→,¬
1 ) = {[p]≡, [¬p]≡, [p→ p]≡, [¬(p→ p)]≡} is a

four-element Boolean algebra.

The intuitionistic logic Int→,¬
1 . Lindenbaum’s algebra

AL(Int→,¬
1 ) = {[p]≡, [¬p]≡, [¬¬p]≡, [¬¬p→ p]≡, [p→

p]≡, [¬(p→ p)]≡} is a six-element Heyting algebra.
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The implicational fragment of classical logic Cl→2 .

Lindenbaum’s algebra

AL(Cl→2 ) = {[p]≡, [q]≡, [p→ p]≡, [p→ q]≡, [q → p]≡, [(p→
q)→ q]≡} is a six-element upper semi-lattice.

@
@
@
@
@
@@r�

�
�
�
�
��

[p]≡ [q]≡

[(p→ q)→ q]≡

@
@
@
@
@
@@

r

r�
�
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�
��

r

rr[q → p]≡ [p→ q]≡

[p→ p]≡
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The intuitionistic logic Int→2 . Lindenbaum’s algebra

AL(Int→2 ) is a fourteen-element upper semi-lattice with the

following classes:

I = [p]≡, II = [q]≡

III = [p→ q]≡, IV = [q → p]≡

V = [(p→ q)→ p]≡, V I = [(p→ q)→ q]≡

V II = [(q → p)→ q]≡, V III = [(q → p)→ p]≡

IX = [(p→ q)→ ((q → p)→ q)]≡, X = [((p→ q)→ p)→ p]≡

XI = [((p→ q)→ q)→ p]≡, XII = [((q → p)→ q)→ q]≡

XIII = [((q → p)→ p)→ q]≡, T = [p→ p]≡
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Local finiteness
Logic L is locally finite (locally tabular) if in a language with a

finite number of variables the number of classes of non-equivalent

formulas is also finite.

That means that if the logic L is locally finite, then the Lindenbaum

algebra of formulas with a finite number of variables is finite.

Zofia Kostrzycka Locally finite logics have the density



Local finiteness
Logic L is locally finite (locally tabular) if in a language with a

finite number of variables the number of classes of non-equivalent

formulas is also finite.

That means that if the logic L is locally finite, then the Lindenbaum

algebra of formulas with a finite number of variables is finite.

Zofia Kostrzycka Locally finite logics have the density



Finite additivity of µ

For disjoined classes of formulas Ai such that µ(Ai) exist for each

i ≤ n, µ(
⋃n

i=0Ai) exists as well and

µ

(
n⋃

i=0

Ai

)
=

n∑
i=0

µ (Ai)

But µ is not countably additive:

µ

( ∞⋃
i=0

Ai

)
6=
∞∑
i=0

µ (Ai)

It only holds:

µ

( ∞⋃
i=0

Ai

)
≥
∞∑
i=0

µ (Ai)
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The Drmota-Lalley-Woods theorem
Consider a nonlinear polynomial system, defined by a set of

equations {yj = Φj(z, y1, ..., ym)}, 1 ≤ j ≤ m which is a-proper,

a-positive, a-irreducible and a-aperiodic. Then

All component solutions yi have the same radius of

convergence ρ <∞.

There exist functions hj analytic at the origin such that

yj = hj(
√

1− z/ρ), (z → ρ−). (1)

All yj have ρ as unique dominant singularity. In that case, the

coefficients admit a complete asymptotic expansion of the

form:
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[zn]yj(z) ∼ ρ−n
∑

k≥1
dkn

−1−k/2

 . (2)

[6] Flajolet, P. and Sedgewick, R. Analitic combinatorics: functional

equations, rational and algebraic functions, INRIA, Number 4103,

2001.
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Application of the Drmota-Lalley-Woods theorem
Suppose we have two functions fT and fF enumerating the

tautologies of some logic and all formulas. Suppose they have the

same dominant singularity ρ and there are the suitable constants

α1, α2, β1, β2 such that:

fT (z) = α1 − β1
√

1− z/ρ+O(1− z/ρ), (3)

fF (z) = α2 − β2
√

1− z/ρ+O(1− z/ρ). (4)

Then the density of truth is given by:

µ(T ) = lim
n→∞

[zn]fT (z)

[zn]fF (z)
=
β1
β2
. (5)
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Let L→k - locally finite logic. We assume that the functor of

implication fulfils the following three very general conditions:

(i) p→ p ∈ TL,
(ii) for any α ∈ Form→k it holds: α→ (p→ p) ∈ TL,
(iii) for any α ∈ Form→k it holds: (p→ p)→ α ∈ [α]≡.

The conditions hold for the classical and intuitionistic implications

as well as for many other implications, e.g., Łukasiewicz’s and the

strict implication.
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Theorem

Let L be a locally finite purely implicational logic fulfilling the

conditions (i)-(iii) in language with k variables. Then the density of

truth of L exists.

[7] Z.K., On the Density of truth of locally finite logics, Journal of

Logic and Computation, Vol. 19 (6), (2009).

Proof

L - locally finite, then Lindenbaum’s algebra consists of m

equivalence classes A1, ...Am. Let Am = TL.
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for each Ai, we may write down a formula describing the way

of creating the formulas from the given class. It is the same

task as writing the appropriate truth-table.

After translating each formula into an equation on generating

functions, we obtain a system of m equations. By fi we

denote the generating function for the class Ai. Because the

conditions (ii) and (iii) hold, the obtained system of equations

has to look like:
f1 = ...+ fm · f1 + ...

f2 = ...+ fm · f2 + ...

... = .........

fm = ...+ (f1 + f2 + ...+ fm) · fm + ...

(6)
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It is easy to prove that the system (6) is a-positive, a-proper,

a-irreducible. We should prove that it is a-aperiodic.

a-aperiodicity: z (not z2 or z3...) is the right variable, that

means for each fj there exist three monomials za, zb, and zc

such that b− a and c− a are relatively prime. Then for each

generating function fj(z) =
∑∞

n=0 cjnz
n there is some n0

such that for all n > n0 it holds cjn 6= 0.
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The formula p→ p is the shortest tautology (of the length 2).

From (ii) we conclude that in the class TL there are formulas of

each length greater than or equal to 2. Then in the expansion

fm(z) =
∑∞

n=2 cmnz
n the coefficients cmn 6= 0 for n ≥ 2. Next,

from (iii) we conclude that if the shortest formula from Aj has, for

instance, the length l, then in the class Aj there are formulas of

each length ≥ l + 2. Hence we have fj(z) =
∑∞

n=l cjnz
n, and

cjn 6= 0 for n = l and n ≥ l + 2. That means that the system of

equations (6) is a-aperiodic.
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Corollary

Let L be a locally finite logic with implication and other functors as

well. Then the density µ(L) exists.

Corollary

Let L be a locally finite logic in which implication is definable.

Then the density µ(L) exists.
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Application

Theorem

Classical logic is locally finite and this fact does not depend on the

chosen set of functors.

Theorem

[Diego-Popiel] The implicational fragment of intuitionistic logic is

locally finite. The implicational-negational fragment of intuitionistic

logic is locally finite.
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Conjuncture from [8] and [1]

lim
k→∞

µ(Int→k )

µ(Cl→k )
= 1

assuming that the densities exist.

[8] Moczurad M., Tyszkiewicz J., Zaionc M. Statistical properties

of simple types, Mathematical Structures in Computer Science, vol

10, 2000, pp 575-594.
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Result from [9].

lim
k→∞

µ−(Int→k )

µ(Cl→k )
= 1

where µ−(Int→k ) = lim infn→∞
|Int→k ∩Formn

k |
|Formn

k |
and Formn

k – set of

implicational formulas of length n with k variables.

[9] Fournier H., Gardy D., Genitrini A., Zaionc M. Classical and

intuitionistic logic are asymptotically identical, Lecture Notes in

Computer Science 4646, pp. 177-193.
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A strengthening

Theorem

The densities µ(Cl→k ) and µ(Int→k ) of the implicational fragments

of classical and intuitionistic logics exist and it holds;

lim
k→∞

µ(Int→k )

µ(Cl→k )
= 1
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Locally finite modal logics with implication

A logic L ∈ NEXT (K4) is locally finite iff L is of finite depth.

Let us consider the family K4⊕ bdn for each n ≥ 1, where

bd1 = ♦�p1 → p1,

bdn+1 = ♦(�pn+1 ∧ ¬bdn)→ pn+1.

The logics K4⊕ bdn for each n ≥ 1 have finite depth.

Theorem

Let L ∈ NEXT (K4⊕ bdn) for any n ≥ 1. Then its density of

truth exists.
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Why µ(Cl↔1 ) does not exist?

Lindenbaum’s algebra is a two-element Boolean algebra:

AL(Cl↔1 ) = {[p↔ p]≡, [p]≡}. In this fragment of classical logic,

the functor of implication is not definable and moreover the length

of each tautology is an even number, whereas the length of each

non-tautology is odd, see [10].

[10] Matecki G. Asymptotic density for equivalence, Electronic

Notes in Theoretical Computer Science URL, 140:81-91, 2005.
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The appropriate system of two equations with two generating

functions is not a-aperiodic.

fT (z) = 1z2 + 5z4 + 42z6 + ...

The explicit formula for fT :

fT (z) =
1

4

(
2−
√

1− 4z −
√

1 + 4z
)
.

There are two singularities z1 = 1
4 and z2 = −1

4 . Analogously

Cl↔2 and Int↔2 . Also: Cl↔,¬
2 and Int↔,¬

2 .
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Question
What can we say about logics with implication fulfilling the

conditions (i)-(iii) which are not locally finite?

Do they have the density of truth?

Example: Int→,¬,∨
p or Int→,∨

p,⊥

α0 = ¬(p→ p), α1 = p, α2 = ¬p,
α2n+1 = α2n ∨ α2n−1, α2n+2 = α2n → α2n−1 for n ≥ 1

αω = p→ p.
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The Rieger-Nishimura lattice

@
@
@
@@

@
@
@
@@

p
p
�
�
�p
p�

�
�

�
�
�p

p[α4]≡ [α3]≡

[α2]≡[α1]≡

[α0]≡

[α5]≡

@
@
@
@@

@
@
@
@@

p
p
�
�
�p

p�
�
�

�
�
�p
p[α8]≡ [α7]≡

[α6]≡

[α9]≡

@
@
@
@@

@
@
@
@@

p
p
�
�
�p

p�
�
�

�
�
�p

p[α12]≡ [α11]≡

[α10]≡

[α13]≡

ppp
p[αω]≡

where
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Lemma

The density of truth of Int→,¬,∨
p exists and it is estimated as

follows:

0.7068 ≤ µ(Int→,¬,∨
p ) ≤ 0.709011

Problem

Does µ(Int→,¬,∨
p,q ) exist?
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