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A ⊂ Form, ||α|| -length of α

We associate the density µ(A) with a subset A of formulas as:

µ(A) = lim
n→∞

card {α ∈ A : ||α|| = n}
card {α ∈ Form : ||α|| = n}

if the appropriate limit exists.

If A is the set of tautologies of a given logic, then µ(A) is called

the density of truth of this logic.
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Densities of some fragments of classical, intuitionistic and modal

logics:

µ(Cl→p,q) ≈ 51.9%

µ(Int→p,q) ≈ 50.43%

[1] Z.K., On the density of implicational parts of intuitionistic and

classical logics, Journal of Applied Non-Classical Logics, Vol. 13,

Number 3, 2003, pp 295-325.

µ(Cl→,¬
p ) ≈ 42.3%

µ(Int→,¬
p ) ≈ 39.5%

[2] Z. K., M. Zaionc, Statistics of intuitionistic versus classical

logics, SL, Vol. 76, Number 3, 2004, pp 307 - 328.

Zo�a Kostrzycka On density of truth of locally �nite logics



Densities of some fragments of classical, intuitionistic and modal

logics:

µ(Cl→p,q) ≈ 51.9%

µ(Int→p,q) ≈ 50.43%

[1] Z.K., On the density of implicational parts of intuitionistic and

classical logics, Journal of Applied Non-Classical Logics, Vol. 13,

Number 3, 2003, pp 295-325.

µ(Cl→,¬
p ) ≈ 42.3%

µ(Int→,¬
p ) ≈ 39.5%

[2] Z. K., M. Zaionc, Statistics of intuitionistic versus classical

logics, SL, Vol. 76, Number 3, 2004, pp 307 - 328.

Zo�a Kostrzycka On density of truth of locally �nite logics



Densities of some fragments of classical, intuitionistic and modal

logics:

µ(Cl→p,q) ≈ 51.9%

µ(Int→p,q) ≈ 50.43%

[1] Z.K., On the density of implicational parts of intuitionistic and

classical logics, Journal of Applied Non-Classical Logics, Vol. 13,

Number 3, 2003, pp 295-325.

µ(Cl→,¬
p ) ≈ 42.3%

µ(Int→,¬
p ) ≈ 39.5%

[2] Z. K., M. Zaionc, Statistics of intuitionistic versus classical

logics, SL, Vol. 76, Number 3, 2004, pp 307 - 328.

Zo�a Kostrzycka On density of truth of locally �nite logics



µ(S5→,�
p ) ≈ 60.81%

µ(Grz→,�
p ) < 60.88%

[3] Z.K., On the density of truth in modal logics, DMTCS 2006, pp

161-170.

µ(Cl∧,∨p,¬p) ≈ 28.8%

µ(Cl∧,∨p,q,¬p,¬q) ≈ 20.9%

[4] D. Gardy and A.R. Woods, And/or tree probabilities of Boolean

functions, DMTCS, 2005, pp 139-146.
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Negative examples:

µ(Cl↔p ),

µ(Cl↔p,q),

µ(Cl↔,¬
p ),

µ(Cl↔,¬
p,q )

[5] Z.K., On asymptotic divergency in equivalential logics,

Mathematical Structures in Comp. Science, vol. 18, 2008, pp.1-14.
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Counting formulas - example

Language: p, →,¬ .

Length of formula is de�ned:

||p|| = 1

||φ→ ψ|| = ||φ||+ ||ψ||+ 1

||¬φ|| = ||φ||+ 1

Fn - set of formulas of length n− 1
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Number of formulas from Fn is given by the recursion:

|F0| = 0, |F1| = 0, |F2| = 1

|Fn| = |Fn−1|+
n−2∑
i=1

|Fi||Fn−i|.

Proof: Any formula of the length n− 1 is either a negation of

formula of the length n− 2 (hence |Fn−1|) or an implication

between some pair of formulas of length i− 1 and n− i− 1 (hence∑n−2
i=1 |Fi||Fn−i|).

Then, after calculation: (|Fn|) = (0, 0, 1, 1, 2, 6, 14, 30, 74, 186, ...)
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Generating functions

Let (an) = (a0, a1, a2, . . . ) be a sequence of real numbers.

Corresponding formal power series

∞∑
n=0

anz
n

converging uniformly to a function fA(z) will be called the

generating function

If the generating function fA(z) is known we can reconstruct the

sequence (an) applying the Taylor formula:

an =
f
(n)
A (0)

n!
.
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Example - formulas written with p, →,¬
From the recursion:

|F0| = 0, |F1| = 0, |F2| = 1

|Fn| = |Fn−1|+
n−2∑
i=1

|Fi||Fn−i|.

we get that the generating function f(z) =
∑∞

n=0 |Fn|zn ful�ls the

equation:

f(z) = zf(z) + f2(z) + z2

After solving with boundary condition f(0) = 0 we get:

f(z) =
1− z −

√
(z + 1)(1− 3z)

2
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The Drmota-Lalley-Woods theorem

Consider a nonlinear polynomial system, de�ned by a set of

equations {yj = Φj(z, y1, ..., ym)}, 1 ≤ j ≤ m which is a-proper,

a-positive, a-irreducible and a-aperiodic. Then

1 All component solutions yi have the same radius of

convergence ρ <∞.

2 There exist functions hj analytic at the origin such that

yj = hj(
√

1− z/ρ), (z → ρ−). (1)

3 All yj have ρ as unique dominant singularity. In that case, the

coe�cients admit a complete asymptotic expansion of the

form:
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[zn]yj(z) ∼ ρ−n
∑

k≥1
dkn

−1−k/2

 . (2)

[6] Flajolet, P. and Sedgewick, R. Analitic combinatorics: functional

equations, rational and algebraic functions, INRIA, Number 4103,

2001.
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Application of the Drmota-Lalley-Woods theorem

Suppose we have two functions fT and fF enumerating the

tautologies of some logic and all formulas. Suppose they have the

same dominant singularity ρ and there are the suitable constants

α1, α2, β1, β2 such that:

fT (z) = α1 − β1
√

1− z/ρ+O(1− z/ρ), (3)

fF (z) = α2 − β2
√

1− z/ρ+O(1− z/ρ). (4)

Then the density of truth is given by:

µ(T ) = lim
n→∞

[zn]fT (z)

[zn]fF (z)
=
β1
β2
. (5)
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Example: (Cl→,¬
p )

The Lindenbaum algebra of (Cl→,¬
p ) consists of 4 classes:

A = [p]≡, B = [¬p]≡,

N = [¬(p→ p)]≡, T = [p→ p]≡.

Diagram:

@
@
@@

@
@
@@p

p

�
�
��p

p�
�
��

[p]≡ [¬p]≡

[¬(p→ p)]≡

[p→ p]≡
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From truth-table to system of equations

→ N A B T ¬
N T T T T T

A B T B T B

B A A T T A

T N A B T N

fT (z) = fN (z)f(z) + fA(z)(fA(z) + fT (z)) + fB(z)(fB(z) +

+fT (z)) + f2T (z) + zfN (z),

fA(z) = fB(z)(fN (z) + fA(z)) + fT (z)fA(z) + zfB(z) + z,

fB(z) = fA(z)(fN (z) + fB(z)) + fT (z)fB(z) + zfA(z),

fN (z) = fT (z)fN (z) + zfT (z),

Additionally, we know that fT + fA + fB + fN = f
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Solution

After solving we get fT , fA, fB, fN . For example:

fT (z) =

(
24−

√
2Z −

√
2U − 2

√
9− 90z + 27z2 + Y + ZU

)
24

where

X =
√

(3z + 3)(1− 3z),

Y =
√

3(3z − 3)X,

Z =
√

9 + 54z − 9z2 + Y ,

U =
√

9 + 54z + 63z2 + Y .

All the functions: fT , fA, fB, fN , f have the same dominant

singularity at z0 = 1
3 .
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Expansions of f and fT around z0 = 1/3:

fT (z) = α+ β
√

1− 3z +O(1− 3z),

f(z) =
2

3
− 2√

3

√
1− 3z +O(1− 3z),

where

α ≈ 0.621 , β ≈ −0.489 .
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Theorem

µ(Cl→,¬
p ) ≈ −0.489− 2√

3

≈ 0.423 .

Distribution of formulas

@
@
@@

@
@
@@p

p

�
�
��p

p�
�
��

0.215 0.198

0.163

0.423
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Generalization

Logic L is locally �nite (locally tabular) if in a language with a

�nite number of variables the number of classes of non-equivalent

formulas, is also �nite.

Let L→k - locally �nite logic. We assume that the functor of

implication ful�ls the following three very general conditions:

(i) p→ p ∈ TL,
(ii) for any α ∈ Form→k it holds: α→ (p→ p) ∈ TL,
(iii) for any α ∈ Form→k it holds: (p→ p)→ α ∈ [α]≡.

The conditions hold for the classical and intuitionistic implications

as well as for many other implications; e.g. �ukasiewicz's and the

strict implication.
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Theorem

Let L be a locally �nite purely implicational logic ful�lling the

conditions (i)-(iii) in language with k variables. Then the density of

truth of L exists.

[7] Z.K., On the Density of truth of locally �nite logics, JLC,

Advanced Access, June 26, 2009.

Proof

L - locally �nite, then Lindenbaum's algebra consists of m

equivalence classes A1, ...Am. Let Am = TL.
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for each Ai, we may write down a formula describing the way

of creating the formulas from the given class. It is the same

task as writing the appropriate truth-table.

After translating each formula into an equation on generating

functions, we obtain a system of m equations. By fi we

denote the generating function for the class Ai. Because the

conditions (ii) and (iii) hold, the obtained system of equations

has to look like:
f1 = ...+ fm · f1 + ...

f2 = ...+ fm · f2 + ...

... = .........

fm = ...+ (f1 + f2 + ...+ fm) · fm + ...

(6)
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It is easy to prove that the system (6) is a-positive, a-proper,

a-irreducible. We should prove that it is a-aperiodic.

a-aperiodicity: z (not z2 or z3...) is the right variable, that

means for each fj there exist three monomials za, zb, and zc

such that b− a and c− a are relatively prime. Then for each

generating function fj(z) =
∑∞

n=0 cjnz
n there is some n0

such that for all n > n0 it holds cjn 6= 0.
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The formula p→ p is the shortest tautology (of the length 2).

From (ii) we conclude that in the class TL there are formulas of

each length greater than or equal to 2. Then in the expansion

fm(z) =
∑∞

n=2 cmnz
n the coe�cients cmn 6= 0 for n ≥ 2. Next,

from (iii) we conclude that if the shortest formula from Aj has, for

instance, the length l, then in the class Aj there are formulas of

each length ≥ l + 2. Hence we have fj(z) =
∑∞

n=l cjnz
n, and

cjn 6= 0 for n = l and n ≥ l + 2. That means that the system of

equations (6) is a-aperiodic.
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Corollary

Let L be a locally �nite logic with implication and other functors as

well. Then the density µ(L) exists.

Corollary

Let L be a locally �nite logic in which implication is de�nable.

Then the density µ(L) exists.
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Locally �nite modal logics with implication

A logic L ∈ NEXT (K4) is locally �nite i� L is of �nite depth.

Let us consider the family K4⊕ bdn for each n ≥ 1, where

bd1 = ♦�p1 → p1,

bdn+1 = ♦(�pn+1 ∧ ¬bdn)→ pn+1.

The logics K4⊕ bdn for each n ≥ 1 have �nite depth.

Theorem

Let L ∈ NEXT (K4⊕ bdn) for any n ≥ 1. Then its density of

truth exists.
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Question

What can we say about logics with implication ful�lling the

conditions (i)-(iii) which are not locally �nite?

Do they have the density of truth?
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Example: Int→,¬,∨
p

@
@
@
@@

@
@
@
@@

p
p
�
�
�p
p�

�
�

�
�
�p

p[α4]≡ [α3]≡

[α2]≡[α1]≡

[α0]≡

[α5]≡

@
@
@
@@

@
@
@
@@

p
p
�
�
�p

p�
�
�

�
�
�p
p[α8]≡ [α7]≡

[α6]≡

[α9]≡

@
@
@
@@

@
@
@
@@

p
p
�
�
�p

p�
�
�

�
�
�p

p[α12]≡ [α11]≡

[α10]≡

[α13]≡

ppp
p[αω]≡

where

α0 = ¬(p→ p), α1 = p, α2 = ¬p,
α2n+1 = α2n ∨ α2n−1, α2n+2 = α2n → α2n−1 for n ≥ 1

αω = p→ p.
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Lemma

The density of truth of Int→,¬,∨
p exists and it is estimated as

follows:

0.7068 ≤ µ(Int→,¬,∨
p ) ≤ 0.709011

Problem

Does µ(Int→,¬,∨
p,q ) exist?
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