TACL AMSTERDAM 2009

On Kripke incomplete logics containing KTB Zofia Kostrzycka Opole University of Technology

Brouwerian logic KTB

Axioms CL and

$$
K := \Box(p \to q) \to (\Box p \to \Box q)
$$

\n
$$
T := \Box p \to p
$$

\n
$$
B := p \to \Box \Diamond p
$$

and rules: (MP), (Sub) i (RG).

Definition 1. A logic L is Kripke complete, if there is a class C of Kripke frames, such that:

- 1. for every formula $\psi \in L$ and any frame $\mathfrak{F} \in \mathcal{C}$ we have $\mathfrak{F} \models \psi.$
- 2. for every formula $\psi \notin L$, there is a Kripke frame $\mathfrak{G} \in \mathcal{C}$ such that $\mathfrak{G} \not\models \psi$.

Kripke frames for KTB

Saul Kripke, Semantical analysis of modal logic , 1963:

 $\mathfrak{F} = \langle W, R \rangle$ where W -nonempty set and R - reflexive and symmetric relation on W.

Extensions of KTB

Ivo Thomas defined in 1964:

 $T_n = KTB \oplus (4_n)$, where (4_n) $\Box^n p \rightarrow \Box^{n+1}p$

 $(trann)$ $\forall x, y$ (if $xR^{n+1}y$ then $xR^{n}y$)

KTB $\subset ... \subset T_{n+1} \subset T_n \subset ... \subset T_2 \subset T_1 = S5.$

PROBLEM 1

Miyazaki [1] constructed one Kripke incomplete logic in $NEXT(T_2)$ and continuum Kripke incomplete logics in $NEXT(\mathbf{T}_5).$

Question: Is there a continuum of Kripke incomplete logics in $NEXT(\mathbf{T}_2)$?

[1] Y. Miyazaki, Kripke incomplete logics containing KTB, Studia Logica, 85, (2007), 311-326.

[2] Z. Kostrzycka, On the existence of a continuum of logics in $NEXT(KTB\oplus \Box^2p\rightarrow \Box^3p)$, Bulletin of the Section of Logic, Vol.36/1, (2007), 1-7.

A sequence of non-equivalent formulas

Denote $\alpha := p \wedge \neg \Diamond \Box p$. Definition 2.

$$
A_1 := \neg p \land \Box \neg \alpha
$$

\n
$$
A_2 := \neg p \land \neg A_1 \land \Diamond A_1
$$

\n
$$
A_3 := \alpha \land \Diamond A_2 \land \neg \Diamond A_1
$$

For $n \geq 2$:

$$
A_{2n} := \neg p \land \Diamond A_{2n-1} \land \neg A_{2n-2}
$$

$$
A_{2n+1} := \alpha \land \Diamond A_{2n} \land \neg A_{2n-1}
$$

Theorem 3. The formulas $\{A_i\}$, $i \geq 1$ are non-equivalent in the logic T_2 .

For any $i \geq 1$ and for any $x \in W$ the following holds:

$$
x \models A_i \quad \text{iff} \quad x = y_i
$$

A diagram of the \mathfrak{W}_8

Theorem 4. \mathfrak{W}_m is reducible to \mathfrak{W}_n iff m is divisible by n, for $n \geq 5$.

Let:

$$
\beta := \neg \Box p \land \Diamond \Box p
$$

\n
$$
\gamma := \beta \land \Diamond A_1 \land \neg \Diamond A_2
$$

\n
$$
\varepsilon := \beta \land \neg \Diamond A_1 \land \neg \Diamond A_2
$$

$$
C_k := \square^2[A_{k-1} \to \Diamond A_k], \text{ for } k > 2
$$

\n
$$
D_k := \square^2[(A_k \land \neg \Diamond A_{k+1}) \to \Diamond \varepsilon],
$$

\n
$$
E := \square^2(\square p \to \Diamond \gamma)
$$

$$
G_k := (\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E) \to \Diamond^2 A_k.
$$

Lemma 5. Let $k \geq 5$ and k - odd number.

 $\mathfrak{W}_i \not\models G_k$ iff i is divisible by $k+2.$

 $Prim := \{n \in \omega : n + 2 \text{ is prime}, n \geq 5\}, X \subset Prim,$

 $L_X := {\bf T_2}\oplus \{G_k: k\in X\}$ -uncountable family in $NEXT({\bf T_2})$

Kripke incomplete extensions of L_X

Modification of Miyazaki's constructions.

Exclusive formulas:

$$
F_* := p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4
$$

\n
$$
F_{**} := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4
$$

\n
$$
F_0 := \neg p_* \wedge p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4
$$

\n
$$
F_1 := \neg p_* \wedge \neg p_0 \wedge p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4
$$

\n
$$
F_2 := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge p_2 \wedge \neg p_3 \wedge \neg p_4
$$

\n
$$
F_3 := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge p_3 \wedge \neg p_4
$$

\n
$$
F_4 := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge p_4
$$

 $Q := \{F_1 \wedge \Diamond F_* \wedge \Diamond (F_{**} \wedge \neg \Diamond F_0) \wedge \Diamond (F_0 \wedge \neg \Diamond F_3 \wedge \neg \Diamond F_4) \wedge$ $\wedge \Diamond (F_2 \wedge \Diamond (F_3 \wedge \Diamond F_4) \wedge \neg \Diamond F_0 \wedge \neg \Diamond F_4) \wedge \neg \Diamond F_3 \wedge \neg \Diamond F_4$ → $\rightarrow \{\Diamond(F_{*} \land \Diamond F_{0} \land \Diamond(F_{2} \land \Diamond(F_{**} \land \Diamond F_{3} \land \Diamond F_{4})) \land \Diamond F_{3} \land \Diamond F_{4})\},\$

$$
R_n := \{ F_* \wedge \Diamond (F_0 \wedge \neg \Diamond F_2 \wedge \neg \Diamond F_3 \wedge \neg \Diamond F_4 \wedge [\neg \Diamond_{*}^{n-1} \wedge \Diamond_{*}^{n}](F_1 \wedge \neg \Diamond (F_2 \wedge \Diamond (F_3 \wedge \Diamond (F_4 \wedge \Diamond (F_{**} \wedge \Diamond F_1 \wedge \Diamond F_2 \wedge \Diamond F_3))))\} \wedge \Diamond (F_1 \wedge \neg \Diamond F_3 \wedge \neg \Diamond F_4) \wedge \Diamond F_2 \wedge \Diamond F_3 \wedge \Diamond F_4 \wedge \neg \Diamond^{2}(F_0 \wedge \Diamond F_{**})\} \wedge \Diamond (F_4 \wedge \Diamond ((\neg \Diamond_{*}^{n+3} \wedge \Diamond_{*}^{n+4})F_0 \wedge \Diamond F_{*} \wedge \Diamond F_{**})\},
$$

where

$$
\begin{aligned}\n\lozenge^0_* \psi &:= \psi, \\
\lozenge^1_* \psi &:= \lozenge(-F_* \wedge \neg F_{**} \wedge \psi), \\
\lozenge^k_* \psi &:= \lozenge(-F_* \wedge \neg F_{**} \wedge \lozenge^{k-1}_*) \psi, \\
\text{and} \\
[\neg \lozenge^{n-1}_* \wedge \lozenge^n_*] \psi &:= \neg \lozenge^{n-1}_* \psi \wedge \lozenge^n_* \psi.\n\end{aligned}
$$

$$
\Diamond_*^2 \psi := \Diamond(\neg F_* \wedge \neg F_{**} \wedge \Diamond(\neg F_* \wedge \neg F_{**} \wedge \psi))
$$

The role of the formula R_1 :

The role of the formula R_2 :

Definition 6. $L'_X := \mathrm{T}_2 \oplus \{G_k : k \in X\} \oplus Q \oplus \{R_n : n \geq 1\}$ **Theorem 7.** For each X the logic L_X' is Kripke incomplete.

Theorem 8. The family of logics L_X' is an uncountable family of Kripke incomplete logics in $NEXT(T_2)$.

[3] Kostrzycka Z., On non-compact logics in $NEXT(KTB)$, Math. Log. Quart. 54, No. 6, (2008), 582-589.

PROBLEM 2: Is there a finitely axiomatizable extension of T_2 which is Kripke incomplete?

Axioms for L∗

 $F_*, F_0, F_1, F_2, F_3, F_4, F_5$ - exclusive formulas:

$$
Q' := \{F_1 \wedge \Diamond F_* \wedge \Diamond (F_0 \wedge \neg \Diamond F_2 \wedge \neg \Diamond F_3 \wedge \neg \Diamond F_4) \wedge \\ \wedge \Diamond (F_2 \wedge \Diamond (F_3 \wedge \Diamond (F_4 \wedge \Diamond F_5)) \wedge \neg \Diamond F_4 \wedge \neg \Diamond F_5) \wedge \neg \Diamond F_3 \} \\ \rightarrow \Diamond (F_* \wedge \Diamond F_0 \wedge \Diamond F_2 \wedge \Diamond F_3 \wedge \Diamond F_4 \wedge \Diamond F_5).
$$

The role of Q' :

$$
K := \{F_5 \wedge \Diamond [F_4 \wedge \Diamond (F_3 \wedge \Diamond (F_2 \wedge \Diamond (F_1 \wedge \Diamond F_0))))] \wedge \Diamond F_*
$$

\n
$$
\wedge \bigwedge_{i=0}^5 \Box^2 (F_i \rightarrow \Box p) \wedge \Box^2 \left((p \wedge F_*) \rightarrow \bigwedge_{i=0}^5 \Diamond F_i \right) \wedge
$$

\n
$$
\wedge \Box^2 \left(F_* \vee \bigvee_{i=0}^5 F_i \right) \wedge \Box^2 [\Box (F_5 \vee (F_* \wedge p)) \rightarrow \Diamond (F_5 \wedge \Diamond F_4)] \wedge
$$

\n
$$
\wedge \bigwedge_{i=0}^4 \Box^2 [\Box (F_i \vee (F_* \wedge p)) \rightarrow \Diamond (F_i \wedge \Diamond F_{i+1})] \rightarrow \Diamond F_0
$$

The role of K :

$$
P := \{r \wedge \bigwedge_{i=1}^{3} (A_i \wedge B_i \wedge C_i)\} \rightarrow \Diamond^2 \{r \wedge \Box(r \rightarrow (q_1 \vee q_2 \vee q_3))\},
$$

where

$$
A_i := \Box^2(q_i \rightarrow r), B_i := \Box^2(r \rightarrow \Diamond q_i), \text{ for } i = 1, 2, 3
$$

$$
C_1 := \Box^2 \neg (q_2 \wedge q_3), C_2 := \Box^2 \neg (q_1 \wedge q_3), C_3 := \Box^2 \neg (q_1 \wedge q_2).
$$

Theorem 9. The logic $L_* = T_2 \oplus K \oplus Q' \oplus P$ is Kripke incomplete.

[4] Kostrzycka Z., On a finitely axiomatizable Kripke incomplete logic containing KTB, Journal of Logic and Computation.

Proof

We find a formula ψ such that $\psi \notin L_*$ and for any Kripke frame $\mathfrak F$ the following implication holds:

if $\mathfrak{F} \models L_*,$ then $\mathfrak{F} \models \psi.$

Formuła ψ

$$
H_* := \neg s_0 \land \neg s_1 \land \neg s_2 \land \neg s_3 \land \neg s_4,
$$

\n
$$
H_0 := \Box \neg s_0 \land \neg s_1 \land s_2 \land s_3 \land s_4,
$$

\n
$$
H_1 := \neg s_0 \land \Box \neg s_1 \land \neg s_2 \land s_3 \land s_4,
$$

\n
$$
H_2 := s_0 \land \neg s_1 \land \Box \neg s_2 \land \neg s_3 \land s_4,
$$

\n
$$
H_3 := s_0 \land s_1 \land \neg s_2 \land \Box \neg s_3 \land \neg s_4,
$$

\n
$$
H_4 := s_0 \land s_1 \land \neg s_2 \land \neg s_3 \land \Box \neg s_4,
$$

\n
$$
H_5 := \neg s_0 \land s_1 \land \neg s_2 \land s_3 \land \neg s_4,
$$

 $\psi := \neg \{ H_5 \land \Diamond [H_4 \land \Diamond (H_3 \land \Diamond (H_2 \land \Diamond (H_1 \land \Diamond H_0 \land \Diamond H_*))) \}$.

Suppose that there is a Kripke frame \mathfrak{F} such that $\mathfrak{F} \models L_*$ and $\mathfrak{F} \not\models \psi$.

Then the structure $\mathfrak F$ consists of at least seven different points $x_*, x_0, x_1, x_2, x_3, x_4, x_5$ such that: $x_1Rx_*,$ and x_iRx_j iff $|i - j| \le 1$ for $i, j = 0, ..., 4$ i $x_4 R x_5$.

We define a valuation for the variables $p_0, ..., p_5, p_*$:

 $V(p_i) = \{x_i\}$ for $i = 0, ..., 5$, and $V(p_*) = \{x_*\}.$ That gives us:

 $V(F_i) = \{x_i\}$ for $i = 0, ..., 5,$ and $V(F_*) = \{x_*\}.$

$$
x_5 \models F_5
$$
 $x_4 \models F_4$ $x_3 \models F_3$ $x_2 \models F_2$ $x_1 \models F_1$ $x_0 \models F_0$

The formula Q' has to be true under that valuation, hence it must hold: $x_* R x_j$, for $j = 0, 2, 3, 4, 5$.

Let us consider a new valuation defined on the obtained frame:

$$
x_* \models p_*, \quad x_i \models p_i, \quad \text{for} \quad i = 0, 1, 2, 3, 4, 5
$$

For such valuation we obtain:

$$
x_* \models F_* \land p \quad \text{iff} \quad x = x_*
$$

$$
x \models F_0 \quad \text{iff} \quad x = x_0
$$

$$
x \models F_5 \quad \text{iff} \quad x = x_5
$$

$$
P := \{r \wedge \bigwedge_{i=1}^{3} (A_i \wedge B_i \wedge C_i)\} \rightarrow \Diamond^2 \{r \wedge \Box(r \rightarrow (q_1 \vee q_2 \vee q_3))\},
$$

where

$$
A_i := \Box^2(q_i \rightarrow r), B_i := \Box^2(r \rightarrow \Diamond q_i), \text{ for } i = 1, 2, 3
$$

$$
C_1 := \Box^2 \neg (q_2 \wedge q_3), C_2 := \Box^2 \neg (q_1 \wedge q_3), C_3 := \Box^2 \neg (q_1 \wedge q_2).
$$

Formula P is false with the following valuation:

$$
V_*(r) = \{x_*, x_0, ..., x_5\}, \quad V_*(q_1) = \{x_1, x_4\}, \quad V_*(q_2) = \{x_2, x_5\}
$$

$$
V_*(q_3) = \{x_*\}.
$$

We take x_3 . It holds: $x_3 \models r$ and $x_3 \models A_i \wedge B_i \wedge C_i$ for $i = 1, 2, 3$. However $x_{3n} \not\models q_1 \vee q_2 \vee q_3$ for $n = 0, 1$, and then $x_3 \not\models \Diamond^2 \{r \wedge \Box(r \rightarrow (q_1 \vee q_2 \vee q_3))\}.$

Hence: $x_3 \not\models P$.

We use a general frame to show that $\psi \notin L_*$.

Define:

 $\mathfrak{G} = \langle W, R, T \rangle$ where:

$$
W := \{x_{*}\} \cup \{x_{i}, i \in \mathbb{Z}\},
$$

\n
$$
R := \{(x_{*}, x_{i}) \text{ for each } i \in \mathbb{Z}, \} \cup
$$

\n
$$
\cup \{(x_{i}, x_{j}) \text{ iff } |i - j| \leq 1; \text{ for any } i, j \in \mathbb{Z}\},
$$

\n
$$
T := \{X \subset W : X \text{ is finite or } W \setminus X \text{ is finite}\}.
$$

 $\mathfrak{G} \models P, Q', K.$

Define a valuation:

$$
V(s_0) = \{x_2, x_3, x_4\}, V(s_1) = \{x_3, x_4, x_5\}, V(s_2) = \{x_0, x_4, x_5\},
$$

$$
V(s_3) = \{x_0, x_1, x_5\}, V(s_4) = \{x_0, x_1, x_2\}.
$$

 \circ

Then for

 $\psi := \neg \{H_5 \wedge \Diamond [H_4 \wedge \Diamond (H_3 \wedge \Diamond (H_2 \wedge \Diamond (H_1 \wedge \Diamond H_0 \wedge \Diamond H_*)))]\}.$

we obtain $\mathfrak{G} \not\models \psi$.

THANK YOU