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By locally infinite logic, we mean a logic, which in some
language with a finite number of variables, has infinitely
many classes of non-equivalent formulas.

Examples:
— — —, 1L —. 1 ..
Int,”, Cl", Int, '~ Cl, "~ —locally finite

crV — locally finite

k
Ivuﬁ,j’\/’l — locally infinite



- given logic
Definition 1. p =; ¢ if both ¢ — ¢ € Tauty, and ¢ — ¢ €
Tautr,.

Definition 2. L/= = {[a]=, a € Form}

Definition 3. The order of classes [a]= is defined as

[a]l= < [B]lz iffa — B € Tauty,.



where —p :==p — L.

—>7\/7J_

System Cl,
[pV —pl=
[p]=
[L]=

[—]



System Imkl_“\/’L

oa® =1

a’ = p— L

Oan—I_l — a2n \/ a2n—1
a2n+2 — a2n N a2n—1

for n>1



Rieger - Nishimura lattice

A%




Intuitionistic logic - motivation

To exclude non-constructive proofs.



1

. A proof of a A\ 3 consists of a proof of & and a proof
of [3.

. A proof of o« \V 3 is given by presenting either a proof
of v or a proof of f.

. A proof of « — [ is a construction which, giving a
proof of «, returns a proof of f.

. L has no proof and a proof of —« is a construction
which, given a proof of «, would return a proof of L.



States of knowledge

Our knowledge is developing discretely, passing from one
state to another.

Let 1 Rxo.

Ifxz1: a=1, then zo: a=1.

But it is possible:

x1:a=0and xzo: a=1.



Kripke frames and models for Int
Definition 4. An intuitionistic Kripke frame is a pair
5§ = (W, R) consisting of non-empty set W and a partial
order R on W. That means that R is reflexive, transitive
and antisymmetric.

Elements of W are called the points, and xRy is read ‘y is
accessible from x’.

A valuation in § is a function V : (z,p;) — {0, 1}.

If V(z,p;) =1 and zRy, then V(y,p;) = 1.



V(iz,anB) =1 iff V(zx,a) =1 and V(z,8) = 1.
V(iz,avVB) =1 iff V(z,a) =1 o0r V(z,p8) = 1.
V(z, a0 — 3) =1 iff for all y such that zRy

V(y,a) = 1 implies V(y,B3) = 1.

V(z, L) =0.



Example 1

pV —p & Taut;,; WwWhere —-p:=p— L

xQOp:]_

xlop:



oo p:]_’p—>J_:O

$1op:



L2 o

L1

0
1, p— 1 =
p—4i,

=0
| =
R
=0,p

p_



oo p:]_’p—>J_:O

14 p=0,p— L =0,pv(p— 1L)=0



Example 2

——p —p&Tauty,; where —-p:i=p— L

xQOp:]_

xlop:



1 =0
ﬁ
$20p:17p

$1op:



L o

L1

1, p— 1 =0
p—=4i,

=0
| =
R
=0,p

p_



LD o

L1

1, p— 1 =0
p—=4i,

= 1 =0
p — = X
—>O,| — | =
2(9 )
P



L o

L1

1, p— 1 =0
p—=4i,

p:f;,—>¢) 8
((p—



Example 3

(p—q)V(qg—p) &Tautr,,

L]

x1Rx> and x1Rx3



L1

33‘3 1
=0,q :o
pq_—> p =



L3

=1
_an_
P =

=0

_17q_

p =

=0
q— P =

L1

=0
=0,9g—p
q_

p—)



L3
_an_o
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D —
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Rieger - Nishimura lattice

A%




We associate the density u(A) with a subset A of formulas
as:

o #{t € A |t] =n}
WA = 0 4t € Form - (8] = n)

(1)

if the appropriate limit exists.

Asymptotic density is finitely additive:

n(AU B) = p(A) + p(B).
for AN B = 0.



Asymptotic density is not countably additive:

M(U Az) = > pu(4)
i=0

1=0

But:

1=0

#(Ej Ai) > iu(z‘lz’)
1=0 )



The case of the Rieger - Nishimura lattice

Because: U2, AU AY = Form then

1=y (fj AU AW) > 3" (A7) + u(A%).

1=0 1=0
Hence if the densities exist, then

©. @)

n(AY) <1 and p(A¥) < 1.
> n
1=0

If n(A“) exists?



Problem 5. Does the density of truth of Intl_“v’L (or
Intl_“v’ﬁ) as a limit, exist?
Problem 6. Does the density of truth of Ifmtk_“v’L (or

Intl?’v’ﬁ) as a limit, exist?



Generating functions

The Drmota-Lalley-Woods theorem

Theorem 7. Consider a nonlinear polynomial system, de-
fined by a set of equations

which is a-proper, a-positive, a-irreducible and a-aperiodic.
T hen

1. All component solutions y; have the same radius of
convergence p < oo.



2. There exist functions hj analytic at the origin such

that
yj = hj(y1—2/p), (z—p7). (2)

3. All other dominant singularities are of the form pw with
w being a root of unity.

4. If the system is a-aperiodic then all y; have p as unique
dominant singularity. In that case, the coefficients ad-
mit a complete asymptotic expansion of the form:

[2"]y;(z) ~ p™" (Z dknlk/z) : (3)

k>1



Application of the Drmota-Lalley-Woods theorem

Suppose we have two functions fr and fr enumerating
the tautologies of some logic and all formulas. Suppose
they have the same dominant singularity p and there are
the suitable constants a4, as, 81, B> such that:

fr(z) = a1 —B1y1—2/p+0O(1 —z/p), (4)
fr(z) =ap — B2y/1—-2/p+O(1 —z/p). (5)

Then the density of truth (probability that a random for-
mula is a tautology) is given by:

T = i EUTE) B

e Ll e (2) B (©)




The main generating function

Language: p,—,V, L.

Lemma 8. The generating function f for the numbers |Fy,|
is the following:

1—+1—-162

) ===



Finite quotient sub-lattices obtained from the Rieger -
Nishimura lattice R
Definition 9. Let (B, <) be a pseudo-Boolean algebra (PBA).
A nonempty set D C B is a filter if for any a,b € D it holds:
1) anbeD, 2) ifaeD and a<¢, then ce D .

[A2"—1) = {a € Form : o?"~1 — o € A%} -generated filter

Sequence of finite quotient algebras

AL4 e R/[A3)7 AL6 e R/[A5)7 ALS e R/[A7)7
ALQn L= R/[AQn—l),---






Algebra ALg 1= R/(4,)

[A3)






Algebra ALg := R/ 4,)

[A4°)




A
lge
br
d AL8
=R/
[A
7)

AN

Ad U
A8
A6



Decreasing sequence of filters:

[A3) D [4>) > .. D[4 H o ... oA

Theorem 10. The density u(A*) exists for any k € N.
Corollary 11. The densities u([A2"~1)) exist for any n € N.



Proof. Density of classes from ALg,.

The operations {—,V} in the algebra are given by the

following truth-tables:

. AO AluAat| A2 | [43)
AP [A°) [A3) | [A2) ] [4°)
Al y A% A [A3) A2 | [A3)
A? Alu At | Al u A% | [43) | [43)
[A3) AO AluAa% | A2 | [43)
V AO AluAt | A2 | [4D)

AV AV Al U A% | A% | [AD)
Aluas | Aluad | AluAas | [4A3) | [43)
A2 A2 [A3) A? | [A3)
[A3) [A3) [A3) | [43) | [A3)




( fox) = fi3y(®)fo(2) + [fo(2)]? + =
(f1+ fa)(z) = [f3)(2)(f1 + fa)(2)+
f2(2)[fo(2) + (f1 + fa)(2)] + 2fo(2) (f1 + fa)(2)
< +(f1 + fa) ()] + =
f2(z) = fi3y(2) f2(2) + (f1 + fa) (=) [fo(2)+
F2(2] + 2fo(2) f2(2) + [f2(2)]?
L IR) = f(z) = [fo(z) + (f1 + fa)(2) + f2(2)]

The system is a-proper, a-positive *, a-irreducible and a-
aperiodic. All the functions have the same as the function
f unique dominant singularity zg = 1/16 and the densities
of the classes A9, Al U A% A2 [A3) exist.

*For the function f3) there is a strictly positive formula built from
the other functions. We use the another one for simplicity



Analogous situation holds for each algebra AL,, for any
n € N. In any case we obtain a system of 2n equations,
which is a-proper, a-positive, a-irreducible and a-aperiodic.
So, the densities again exist. L]



Calculation of the basic functions

From system of four equations we calculate:

1
fo = S (143557 -VA+3f5- 282
fi+fa = 28— f°
fo = fo—rfo

fizy = f—Jfo—(1+ fa) — fa

where f = 1_V£_16z and f§ = lff




Lemma 12. Expansions of functions f, fo, f1+ fa, fo and

f13) in a neighborhood of zo = 1/16 are as follows:

1 1

f(z) = Z—Z\/1—16z—|—...
fo(z) = ag+a1Vv1—16z-+ ..
(fi1+ f2)(z) = bg+bivV1—162z+ ..
fo(2) = cg+c1V1—16z+ ..
fizy(z) = do+divV1—16z+ ..
ap ~ 0.0732..., a1~ —0.0172..., by~ 0.0934...

co~ 0.0101..., c¢;~—0.0105..., dg=~ 0.0733...

Y

Y

b1

dq

Q

Q

—0.038:

—0.184



Lemma 13. T he densities of the classes of formulas from
the algebra AL, exist and are the following:

1(A%) ~ 0.069
w(AtU A% =~ 0.153
1(A?) ~ 0.042
1([A3)) ~ 0.736

0.736

0.15 .042

0.0



Observation 14. The algebra ALy4 is a Lindenbaum alge-
bra of the classical logic with one variable. Hence

u(CL V) = p([A3)) =~ 0.736



Densities of classes from AlLg
Lemma 15. T he densities of the classes from the algebra
ALg exist and are the following:

0.71099




An upper estimation of density of Im/fp_“v’L

We consider the algebra ALyp =R/(4, )



A2k—2 2k—=3 ) A2k
AQk— A2k—4
A2k~ 2k—7
2k—8
A5
A4 A3
A A2



n—1 n—1
A2 = SO 1AY - Bl + S 1A - (|Faes] — 149, — 142,
=1 =1

Z A2 (|Fres| — A — 1AL — 1A% ) + ...
1=1

n—

Z (JAZF73| + |AZK]) - (JAZR 3] A2k | 4 (A2, ) +

n— 1
+ 3 |AZR 2L (|AZE 2 4 (AR, D +
z—l

42 Z |A2k: 2| (|A2kz 4|_|_|A2k: 3|+|A2kz|>
2—1

+2 Z [AZE 1)) - [[A% )il +
i=1

n—1
+2 3 [[AZF )] (|Fms] — [[A%F D))
=1



Of course, the sum written above as ‘..." is finite in the
case of finite algebra AL,;. After simplification, the above
formula may by transformed into the following one:

fok—1) = o-f+fi-(f—fo—Jfa)+ fo-(F—fo—f1—fa) +
+f3-(f—fo—f1—f2—fa)+ ...
o+ for—o - (f = fo— f1— - — for—3 — for) + (for—3 +.
(f—fo—f1— - — fok—a — for—2) +
+2for—2 " (for—4 + for—3 + for)]/(1 — 2f)



uw([A3)) ~ 0.736

1u([A®)) ~ 0.71099
w([A7)) ~ 0.709016
1([A%)) =~ 0.709011

w([A3) > w([A%) > ... > u([A2"71) > .. > u(4¥)
Observation 16. If u(A%) exists, then u(A¥) < 0.709011



A lower estimation of u(A%).






n—1 n—1
A9 = ST |AY Bl 4+ ST AL - (B — (A + |AZ2_)D) +
1=1 1=1

n—1
+ N 1AZ] - (|Fneil — (AS |+ 145 il + AR D) +
1=1

n—1
+ S A3 - (|Fpei] — (A 4+ 1AL+ 142, + AL D) +
1=1

n—1
+ ST IAF - ([ Fsi) = (AD | 4 1AL 4 A2 + A + 1AS D
i=1

n—1
+ ST AP (|Fei] — (ARl 4+ AR+ o+ AR+ 1AS D) +

1=1

n—1 n—1
+2 ) AP 1AG il +2 ) [AF] - (1Pl = A7)



Observation 17. Let (¢n), (dn) and (en) be three se-
quences of natural numbers, such that c¢, < d, for all

n € N. Suppose two new sequences are defined recursively
as follows:

n—1
xnzcn‘l'zei'xn—ia Yn = dn + Zez Yn—i
1=1 J

Then x, < yn for any n € N.



n—1 n—1
A9 = ST |AY Bl 4+ ST AL - (B — (A + |AZ )+
1=1 1=1

n—1
+ 3 1AZ] - (| Fn—il — (AD i)+ 1AL+ [An D)+
1=1

n—1
+ 3142 - (Pl — (A + 1AL+ A2 + A% D))+
1=1

n—1
+ ST AP ([ Fsi) — (AD | 4 1AL 4 A2+ |AD i + 1AS D
i=1

n—1
+ ST 1A? - (|Fpei] — (JAD il 4+ AR+ o AL+ 1AS )+

1=1

n—1 n—1
+2 30 [AY] AL 42 3 1AL (Pl — [A2,))

1=1 1=1



Smaller numbers |B2|:



n—1 n—1
1B = Y A% 1Rl + X 1AL (|Fas] — (A + [AZD) +
1=1 1=1

n—1
+ N 1AZ] - (|Fn—il — (Al + 145 il + AR D) +
1=1

n—1
+ S A3 - (|Fpsil — (A 4+ 1AL+ 142, + |AL D) +
1=1

n—1
+ ST IAF - ([ Fsi) = (AD | 4 1AL 4 A2 + A4S + 1AS D
i=1

n—1
+ 3" A2] - (|Fp) — (JAS | 4+ o+ A% 4+ 145 +
1=1

n—1 n—1
5 5
+2 3 1B?| - B2l +2 Y |1B?| - (|Faes] — |1Br_iD)
1=1 =1



g5 = (fo-f+fi-(f—fo—f)+fo-(f—fo—f1—fa))+ (7
fa-(f—fo—-fi—fo—fa)+ fa-(f—fo—f1—f2— f3— f6)-
+fs-(f—fo—f1—fo—f3—fa—Tfe)) /(1 —=2f).

Lemma 18. The density of the class B® exists and is the

following:

1(B®) ~ 0.7068 (8)



Theorem 19. If the density of the class A% exists, then it
is estimated as follows:

0.7068 < u(A¥) < 0.709011



The existence of u(A%).

n—1 n—1
2k 0 1 0 2
1=1 1=1

Z AZ] - (1 Fpl = ARl = [Apil = JAR D) + .
i=1
n—

2k+2
— AR - AR

n—ﬂ

Z |AZF) . (|Fpy_g) —1A0_,| — |AL

—1 n—1
Z IBZE| - |B2F, | +2 Y B2 (|Fu_s| — |B2E,)).
i=1 i=1



Observation:

B*cB%c..cA¥c..c[Ad) c[43).

Sequence of compartments [u(B2*), u([A2k—1))], for k > 2.

Problem: to show that their ‘lengths’ tend to O.
Lemma 20.

Jim (u([AZF71) - u(B2)) =0



Proof. We consider the numbers |[A2F—1),| — |B2¥|.

n_

1
[A2F=1y, | — |B2F) = [AZF=2) L (JAZR A 4 |AZF23) 41428 ) 4

n—

Z |A2k| . (|A2k 3| + |A2k 1| + |A2k—|-2|) _I_
1=1

n_

Z Fy| - (1A% 1), i) — |B2F,)) —

—1
Z AR 1A%y,

The numbers Y11 A2~ .1[426—1), | are non-negative,
so on the base of Observation we may consider larger



numbers |Ck|:

ck = 2 Z [AZR=2) L (JAZRZA) 4 | AZF23) 4142k ) +
1=1

n—1 n—1
2k+2
+ 30 1AZM - (AR + 1ARE + A4S D +2 X IR -G
= 1=1

The numbers |CF| characterize the set C* consisting of
formulas being disjunctions between formulas from A2k—2
and A2k—4 J A2k=3 A2k and implications from A2k to
A2k=3 A2k—=1 A2k+2 gnd disjunctions between formulas
from C* and formulas from Form.

From the above we obtain formulas defining the generat-



ing functions f.; for the numbers |CK|:

_ for - (fog—z + for—1) + 2fok—2 - (for—a + for—3 + for)]
Jor = 1—2f |

The function fck is defined by functions with dominant
singularity at zg = 1/16 (see proof of Theorem 10). So,
it has the same dominant singularity. The density of the
class C* can be computed as follows:

L+ (15)
fids)

u(Cry =

We show that the values of fék(%) tend to O when k
tends to infinity. For simplicity, we introduce a new symbol



hi = for - (fok—3 + for—1) +2fok—2 - (for—a + for—3+ for).
Then, from (10), we have:

h;c(1_16)'(1_2f(116)) hk(16) (= 2«76/(16))
(1—2f(15))?

fck(—) -

The values of f(5x) and f/(s%) exist and are constant. To
prove that

1 1
lim h}, (1—6) =0 and lim hyg (16> = 0. (10)

k— 00 k— o0
we prove that

lim fk(116) =0 and Ilim f (%) =0. (11)

k— o0

It is straightforward to observe that (11) yields (10). From
Theorem 10 it follows that u(A¥) exists for each k € N.



The series > 72 (Ak) is convergent and hence
iMoo 1 (AF) = 0.

So, from the transfer lemma (we know that the functions
fr have the same dominant singularity) we obtain:

lim £, (i> = 0. (12)

Similarly, let us consider the series Y22 fi (1—16) This

series is bounded by f (%) = 1 and the values fj, (%) are



non-negative T, so it also must be convergent. Hence:

im f, (1—16) —o. (13)

k— 00
[]

By Theorem 19 and Lemma 20 we get:
Theorem 21. The density of the class A% exists and is
about 70%.

Tt could be justified as follows: for each i € N, f;(1/16) > 0 because
fi(z) = > 77 samz™ and the series is convergent at zp = L and then

16
the sum Y7 an(35)" is also non-negative.



Problem 1 Investigate the logics Int,j’v’L and (Jl/,j’\/’L
and give an answer if they are asymptotically identical.



