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By locally infinite logic, we mean a logic, which in some
language with a finite number of variables, has infinitely
many classes of non-equivalent formulas.

Examples:

Int→k , Cl
→
k , Int

→,⊥
k Cl

→,⊥
k − locally finite

Cl
→,∨,⊥
k − locally finite

Int
→,∨,⊥
k − locally infinite



L- given logic
Definition 1. ϕ ≡L ψ if both ϕ → ψ ∈ TautL and ψ → ϕ ∈
TautL.

Definition 2. L/≡ = {[α]≡, α ∈ Form}

Definition 3. The order of classes [α]≡ is defined as

[α]≡ ≤ [β]≡ iff α→ β ∈ TautL.



System Cl
→,∨,⊥
1
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[p]≡ [¬p]≡

[⊥]≡

[p ∨ ¬p]≡

where ¬p := p→ ⊥.



System Int
→,∨,⊥
1

α0 = ⊥
α1 = p

α2 = p→ ⊥
α2n+1 = α2n ∨ α2n−1

α2n+2 = α2n → α2n−1

for n ≥ 1



Rieger - Nishimura lattice
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Intuitionistic logic - motivation

To exclude non-constructive proofs.



1. A proof of α ∧ β consists of a proof of α and a proof
of β.

2. A proof of α ∨ β is given by presenting either a proof
of α or a proof of β.

3. A proof of α → β is a construction which, giving a
proof of α, returns a proof of β.

4. ⊥ has no proof and a proof of ¬α is a construction
which, given a proof of α, would return a proof of ⊥.



States of knowledge

Our knowledge is developing discretely, passing from one
state to another.

Let x1Rx2.

If x1 : α = 1, then x2 : α = 1.

But it is possible:

x1 : α = 0 and x2 : α = 1.



Kripke frames and models for Int
Definition 4. An intuitionistic Kripke frame is a pair
F = 〈W,R〉 consisting of non-empty set W and a partial
order R on W . That means that R is reflexive, transitive
and antisymmetric.

Elements of W are called the points, and xRy is read ‘y is
accessible from x’.

A valuation in F is a function V : (x, pj) → {0,1}.

If V (x, pj) = 1 and xRy, then V (y, pj) = 1.



V (x, α ∧ β) = 1 iff V (x, α) = 1 and V (x, β) = 1.

V (x, α ∨ β) = 1 iff V (x, α) = 1 or V (x, β) = 1.

V (x, α→ β) = 1 iff for all y such that xRy

V (y, α) = 1 implies V (y, β) = 1.

V (x,⊥) = 0.



Example 1

p ∨ ¬p 6∈ TautInt where ¬p := p→ ⊥

d

d

p = 0

p = 1

x1

x2



d

d

p = 0

p = 1, p→ ⊥ = 0

x1

x2



d

d

p = 0, p→ ⊥ = 0

p = 1, p→ ⊥ = 0

x1

x2



d

d

p = 0, p→ ⊥ = 0, p ∨ (p→ ⊥) = 0

p = 1, p→ ⊥ = 0

x1

x2



Example 2

¬¬p→ p 6∈ TautInt where ¬p := p→ ⊥

d

d

p = 0

p = 1

x1

x2



d

d

p = 0

p = 1, p→ ⊥ = 0

x1

x2



d

d

p = 0, p→ ⊥ = 0

p = 1, p→ ⊥ = 0

x1

x2



d

d

p = 0, p→ ⊥ = 0

p = 1, p→ ⊥ = 0

(p→ ⊥) → ⊥ = 1

x1

x2



d

d

p = 0, p→ ⊥ = 0

p = 1, p→ ⊥ = 0

((p→ ⊥) → ⊥) → p = 0

x1

x2



Example 3

(p→ q) ∨ (q → p) 6∈ TautInt
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d

d d x3
p = 0, q = 1

x1

x2
p = 1, q = 0

x1Rx2 and x1Rx3
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d

d d x3
p = 0, q = 1
q → p = 0

x1

x2
p = 1, q = 0
p→ q = 0
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d

d d x3
p = 0, q = 1
q → p = 0

x1

x2
p = 1, q = 0
p→ q = 0

p→ q = 0, q → p = 0
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d

d d x3
p = 0, q = 1
q → p = 0

x1

x2
p = 1, q = 0
p→ q = 0

p→ q = 0, q → p = 0

(p→ q) ∨ (q → p) = 0



Rieger - Nishimura lattice
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We associate the density µ(A) with a subset A of formulas
as:

µ(A) = lim
n→∞

#{t ∈ A : ‖t‖ = n}
#{t ∈ Form : ‖t‖ = n}

(1)

if the appropriate limit exists.

Asymptotic density is finitely additive:

µ(A ∪B) = µ(A) + µ(B).

for A ∩B = ∅.



Asymptotic density is not countably additive:

µ

 ∞⋃
i=0

Ai

 6=
∞∑
i=0

µ (Ai)

But:

µ

 ∞⋃
i=0

Ai

 ≥
∞∑
i=0

µ (Ai)



The case of the Rieger - Nishimura lattice

Because:
⋃∞
i=0A

i ∪Aω = Form then

1 = µ

 ∞⋃
i=0

Ai ∪Aω
 ≥

∞∑
i=0

µ
(
Ai

)
+ µ(Aω).

Hence if the densities exist, then
∞∑
i=0

µ
(
Ai

)
≤ 1 and µ(Aω) ≤ 1.

If µ(Aω) exists?



Problem 5. Does the density of truth of Int
→,∨,⊥
1 (or

Int
→,∨,¬
1 ) as a limit, exist?

Problem 6. Does the density of truth of Int
→,∨,⊥
k (or

Int
→,∨,¬
k ) as a limit, exist?



Generating functions

The Drmota-Lalley-Woods theorem

Theorem 7. Consider a nonlinear polynomial system, de-
fined by a set of equations

{y = Φj(z, y1, ..., ym)}, 1 ≤ j ≤ m

which is a-proper, a-positive, a-irreducible and a-aperiodic.
Then

1. All component solutions yi have the same radius of
convergence ρ <∞.



2. There exist functions hj analytic at the origin such
that

yj = hj(
√

1− z/ρ), (z → ρ−). (2)

3. All other dominant singularities are of the form ρω with
ω being a root of unity.

4. If the system is a-aperiodic then all yj have ρ as unique
dominant singularity. In that case, the coefficients ad-
mit a complete asymptotic expansion of the form:

[zn]yj(z) ∼ ρ−n
 ∑
k≥1

dkn
−1−k/2

 . (3)



Application of the Drmota-Lalley-Woods theorem

Suppose we have two functions fT and fF enumerating
the tautologies of some logic and all formulas. Suppose
they have the same dominant singularity ρ and there are
the suitable constants α1, α2, β1, β2 such that:

fT (z) = α1 − β1

√
1− z/ρ+O(1− z/ρ), (4)

fF (z) = α2 − β2

√
1− z/ρ+O(1− z/ρ). (5)

Then the density of truth (probability that a random for-
mula is a tautology) is given by:

µ(T ) = lim
n→∞

[zn]fT (z)

[zn]fF (z)
=
β1
β2
. (6)



The main generating function

Language: p,→,∨,⊥.

Lemma 8.The generating function f for the numbers |Fn|
is the following:

f(z) =
1−

√
1− 16z

4
.



Finite quotient sub-lattices obtained from the Rieger -
Nishimura lattice R

Definition 9.Let (B,≤) be a pseudo-Boolean algebra (PBA).
A nonempty set D ⊂ B is a filter if for any a, b ∈ D it holds:
1) a ∧ b ∈ D, 2) if a ∈ D and a ≤ c, then c ∈ D .

[A2n−1) = {α ∈ Form : α2n−1 → α ∈ Aω} -generated filter

Sequence of finite quotient algebras

AL4 := R/[A3), AL6 := R/[A5), AL8 := R/[A7), ...

AL2n := R/[A2n−1), ...
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Algebra AL4 := R/[A3)
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Algebra AL6 := R/[A5)
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Algebra AL8 := R/[A7)
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Decreasing sequence of filters:

[A3) ⊃ [A5) ⊃ ... ⊃ [A2n−1) ⊃ .... ⊃ Aω

Theorem 10. The density µ(Ak) exists for any k ∈ N .
Corollary 11.The densities µ([A2n−1)) exist for any n ∈ N.



Proof. Density of classes from AL4.

The operations {→,∨} in the algebra are given by the
following truth-tables:

→ A0 A1 ∪A4 A2 [A3)
A0 [A3) [A3) [A3) [A3)

A1 ∪A4 A2 [A3) A2 [A3)
A2 A1 ∪A4 A1 ∪A4 [A3) [A3)

[A3) A0 A1 ∪A4 A2 [A3)

∨ A0 A1 ∪A4 A2 [A3)
A0 A0 A1 ∪A4 A2 [A3)

A1 ∪A4 A1 ∪A4 A1 ∪A4 [A3) [A3)
A2 A2 [A3) A2 [A3)

[A3) [A3) [A3) [A3) [A3)





f0(z) = f[3)(z)f0(z) + [f0(z)]
2 + z

(f1 + f4)(z) = f[3)(z)(f1 + f4)(z)+
f2(z)[f0(z) + (f1 + f4)(z)] + 2f0(z)(f1 + f4)(z)
+[(f1 + f4)(z)]

2 + z
f2(z) = f[3)(z)f2(z) + (f1 + f4)(z)[f0(z)+

f2(z)] + 2f0(z)f2(z) + [f2(z)]
2

f[3)(z) = f(z)− [f0(z) + (f1 + f4)(z) + f2(z)]

The system is a-proper, a-positive ∗, a-irreducible and a-
aperiodic. All the functions have the same as the function
f unique dominant singularity z0 = 1/16 and the densities
of the classes A0, A1 ∪A4, A2, [A3) exist.
∗For the function f[3) there is a strictly positive formula built from
the other functions. We use the another one for simplicity



Analogous situation holds for each algebra AL2n for any
n ∈ N. In any case we obtain a system of 2n equations,
which is a-proper, a-positive, a-irreducible and a-aperiodic.
So, the densities again exist. �



Calculation of the basic functions

From system of four equations we calculate:

f0 =
1

4

(
1 + 3f∗0 − f −

√
(1 + 3f∗0 − f)2 − 8z

)
f1 + f4 = 2f∗0 − f0

f2 = f∗0 − f0

f[3) = f − f0 − (f1 + f4)− f2.

where f = 1−
√

1−16z
4 and f∗0 = z

1−f



Lemma 12. Expansions of functions f , f0, f1+f4, f2 and
f[3) in a neighborhood of z0 = 1/16 are as follows:

f(z) =
1

4
−

1

4

√
1− 16z + ...

f0(z) = a0 + a1
√

1− 16z + ...

(f1 + f4)(z) = b0 + b1
√

1− 16z + ...

f2(z) = c0 + c1
√

1− 16z + ...

f[3)(z) = d0 + d1
√

1− 16z + ...

a0 ≈ 0.0732 . . . , a1 ≈ −0.0172 . . . , b0 ≈ 0.0934 . . . , b1 ≈ −0.0382 . . .

c0 ≈ 0.0101 . . . , c1 ≈ −0.0105 . . . , d0 ≈ 0.0733 . . . , d1 ≈ −0.184 . . .



Lemma 13. The densities of the classes of formulas from
the algebra AL4 exist and are the following:

µ(A0) ≈ 0.069

µ(A1 ∪A4) ≈ 0.153

µ(A2) ≈ 0.042

µ([A3)) ≈ 0.736
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Observation 14. The algebra AL4 is a Lindenbaum alge-
bra of the classical logic with one variable. Hence

µ(Cl→,∨,⊥
p ) = µ([A3)) ≈ 0.736



Densities of classes from AL6

Lemma 15. The densities of the classes from the algebra
AL6 exist and are the following:
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0.069

0.71099



An upper estimation of density of Int→,∨,⊥
p

We consider the algebra AL2k = R/[A2n−1)
.



@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

s
s

�
�

�
�

�

s
s

�
�

�
�

�

�
�

�
�

�

s
s

A4 A3

A2A1

A0

A5 sss

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

s
s

�
�

�
�

�

s
s

�
�

�
�

�

�
�

�
�

�

s
s

A2k−6 A2k−7

A2k−8

A2k−5

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

s
s

�
�

�
�

�

s
s

�
�

�
�

�

�
�

�
�

�

s
s

A2k−2 A2k−3 ∪A2k

A2k−4

[A2k−1)



|[A2k−1)n| =
n−1∑
i=1

|A0
i | · |Fn−i|+

n−1∑
i=1

|A1
i | · (|Fn−i| − |A0

n−i| − |A2
n−i|) +

+
n−1∑
i=1

|A2
i | · (|Fn−i| − |A0

n−i| − |A1
n−i| − |A4

n−i|) + ...

...+
n−1∑
i=1

(|A2k−3
i |+ |A2k

i |) · (|A2k−3
n−i |+ |A2k

n−i|+ |[A2k−1)n−i|) +

+
n−1∑
i=1

|A2k−2
i | · (|A2k−2

n−i |+ |[A2k−1)n−i|) +

+2
n−1∑
i=1

|A2k−2
i | · (|A2k−4

n−i |+ |A2k−3
n−i |+ |A2k

n−i|)

+2
n−1∑
i=1

|[A2k−1)i| · |[A2k−1)n−i|+

+2
n−1∑
i=1

|[A2k−1)i| · (|Fn−i| − |[A2k−1)n−i|)



Of course, the sum written above as ‘...’ is finite in the
case of finite algebra AL2k. After simplification, the above
formula may by transformed into the following one:

f[2k−1) = [f0 · f + f1 · (f − f0 − f2) + f2 · (f − f0 − f1 − f4) +

+f3 · (f − f0 − f1 − f2 − f4) + ...

...+ f2k−2 · (f − f0 − f1 − ...− f2k−3 − f2k) + (f2k−3 + f2k) ·
·(f − f0 − f1 − ...− f2k−4 − f2k−2) +

+2f2k−2 · (f2k−4 + f2k−3 + f2k)]/(1− 2f)



µ([A3)) ≈ 0.736

µ([A5)) ≈ 0.71099

µ([A7)) ≈ 0.709016

µ([A9)) ≈ 0.709011
...

µ([A3)) ≥ µ([A5)) ≥ ... ≥ µ([A2n−1)) ≥ ... ≥ µ(Aω)

Observation 16. If µ(Aω) exists, then µ(Aω) < 0.709011



A lower estimation of µ(Aω).



@
@

@
@

@
@

@

@
@

@
@

@
@

@

q
q

�
�

�
��

q
q

�
�

�
��

�
�

�
��

q
q

A4 A3

A2A1

A0

A5

@
@

@
@

@
@

@

@
@

@
@

@
@

@

q
q

�
�

�
��

q
q

�
�

�
��

�
�

�
��

q
q

A8 A7

A6

A9

@
@

@
@

@
@

@

@
@

@
@

@
@

@

q
q

�
�

�
��

q
q

�
�

�
��

�
�

�
��

q
q

A12 A11

A10

A13

qqq
qAω



|Aωn| =
n−1∑
i=1

|A0
i | · |Fn−i|+

n−1∑
i=1

|A1
i | · (|Fn−i| − (|A0

n−i|+ |A2
n−i|)) +

+
n−1∑
i=1

|A2
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A4

n−i|)) +

+
n−1∑
i=1

|A3
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A2

n−i|+ |A4
n−i|)) +

+
n−1∑
i=1

|A4
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A2

n−i|+ |A3
n−i|+ |A6

n−i|)) +

+
n−1∑
i=1

|A5
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ ...+ |A4

n−i|+ |A6
n−i|)) +

+.....+

+2
n−1∑
i=1

|Aωi | · |A
ω
n−i|+ 2

n−1∑
i=1

|Aωi | · (|Fn−i| − |Aωn−i|)



Observation 17. Let (cn), (dn) and (en) be three se-
quences of natural numbers, such that cn ≤ dn for all
n ∈ N. Suppose two new sequences are defined recursively
as follows:

xn = cn +
n−1∑
i=1

ei · xn−i, yn = dn +
n−1∑
i=1

ei · yn−i

Then xn ≤ yn for any n ∈ N.



|Aωn| =
n−1∑
i=1

|A0
i | · |Fn−i|+

n−1∑
i=1

|A1
i | · (|Fn−i| − (|A0

n−i|+ |A2
n−i|))+

+
n−1∑
i=1

|A2
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A4

n−i|))+

+
n−1∑
i=1

|A3
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A2

n−i|+ |A4
n−i|))+

+
n−1∑
i=1

|A4
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A2

n−i|+ |A3
n−i|+ |A6

n−i|))+

+
n−1∑
i=1

|A5
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ ...+ |A4

n−i|+ |A6
n−i|))+

+.....+

+2
n−1∑
i=1

|Aωi | · |A
ω
n−i|+ 2

n−1∑
i=1

|Aωi | · (|Fn−i| − |Aωn−i|)



Smaller numbers |B5
n|:



|B5
n| =

n−1∑
i=1

|A0
i | · |Fn−i|+

n−1∑
i=1

|A1
i | · (|Fn−i| − (|A0

n−i|+ |A2
n−i|)) +

+
n−1∑
i=1

|A2
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A4

n−i|)) +

+
n−1∑
i=1

|A3
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A2

n−i|+ |A4
n−i|)) +

+
n−1∑
i=1

|A4
i | · (|Fn−i| − (|A0

n−i|+ |A1
n−i|+ |A2

n−i|+ |A3
n−i|+ |A6

n−i|)) +

+
n−1∑
i=1

|A5
i | · (|Fn−i| − (|A0

n−i|+ ...+ |A4
n−i|+ |A6

n−i|)) +

+2
n−1∑
i=1

|B5
i | · |B

5
n−i|+ 2

n−1∑
i=1

|B5
i | · (|Fn−i| − |B5

n−i|)



g5 = (f0 · f + f1 · (f − f0 − f2) + f2 · (f − f0 − f1 − f4))+ (7)

f3 · (f − f0 − f1 − f2 − f4) + f4 · (f − f0 − f1 − f2 − f3 − f6)+

+ f5 · (f − f0 − f1 − f2 − f3 − f4 − f6)) /(1− 2f).

Lemma 18. The density of the class B5 exists and is the
following:

µ(B5) ≈ 0.7068 (8)



Theorem 19. If the density of the class Aω exists, then it
is estimated as follows:

0.7068 ≤ µ(Aω) ≤ 0.709011



The existence of µ(Aω).

|B2k
n | =

n−1∑
i=1

|A0
i | · |Fn−i|+

n−1∑
i=1

|A1
i | · (|Fn−i| − |A0

n−i| − |A2
n−i|) +

+
n−1∑
i=1

|A2
i | · (|Fn−i| − |A0

n−i| − |A1
n−i| − |A4

n−i|) + ...

...+
n−1∑
i=1

|A2k
i | · (|Fn−i| − |A0

n−i| − |A1
n−i| − ...− |A2k−1

n−i | − |A2k+2
n−i |) +

+2
n−1∑
i=1

|B2k
i | · |B2k

n−i|+ 2
n−1∑
i=1

|B2k
i | · (|Fn−i| − |B2k

n−i|).



Observation:

B4 ⊂ B6 ⊂ ... ⊂ Aω ⊂ ... ⊂ [A5) ⊂ [A3) .

Sequence of compartments [µ(B2k), µ([A2k−1))], for k ≥ 2.

Problem: to show that their ‘lengths’ tend to 0.
Lemma 20.

lim
k→∞

(
µ([A2k−1))− µ(B2k)

)
= 0



Proof. We consider the numbers |[A2k−1)n| − |B2k
n |.

|[A2k−1)n| − |B2k
n | = 2

n−1∑
i=1

|A2k−2
i | · (|A2k−4

n−i |+ |A2k−3
n−i |+ |A2k

n−i|) +

+
n−1∑
i=1

|A2k
i | · (|A2k−3

n−i |+ |A2k−1
n−i |+ |A2k+2

n−i |) +

+2
n−1∑
i=1

|Fi| · (|[A2k−1)n−i| − |B2k
n−i|)−

−
n−1∑
i=1

|A2k−1
i | · |[A2k−1)n−i|

The numbers
∑n−1
i=1 |A

2k−1
i | · |[A2k−1)n−i| are non-negative,

so on the base of Observation we may consider larger



numbers |Ckn|:

|Ckn| = 2
n−1∑
i=1

|A2k−2
i | · (|A2k−4

n−i |+ |A2k−3
n−i |+ |A2k

n−i|) + (9)

+
n−1∑
i=1

|A2k
i | · (|A2k−3

n−i |+ |A2k−1
n−i |+ |A2k+2

n−i |) + 2
n−1∑
i=1

|Fi| · |Ckn−i|.

The numbers |Ckn| characterize the set Ck consisting of
formulas being disjunctions between formulas from A2k−2

and A2k−4 ∪ A2k−3 ∪ A2k, and implications from A2k to
A2k−3∪A2k−1∪A2k+2, and disjunctions between formulas
from Ck and formulas from Form.

From the above we obtain formulas defining the generat-



ing functions fCk for the numbers |Ckn|:

fCk =
[f2k · (f2k−3 + f2k−1) + 2f2k−2 · (f2k−4 + f2k−3 + f2k)]

1− 2f
.

The function fCk is defined by functions with dominant
singularity at z0 = 1/16 (see proof of Theorem 10). So,
it has the same dominant singularity. The density of the
class Ck can be computed as follows:

µ(Ck) =
f ′
Ck

( 1
16)

f ′( 1
16)

.

We show that the values of f ′
Ck

( 1
16) tend to 0 when k

tends to infinity. For simplicity, we introduce a new symbol



hk := f2k · (f2k−3 + f2k−1)+2f2k−2 · (f2k−4 + f2k−3 + f2k).
Then, from (10), we have:

f ′
Ck

(
1

16
) =

h′k(
1
16) · (1− 2f( 1

16))− hk(
1
16) · (−2f ′( 1

16))

(1− 2f( 1
16))

2
.

The values of f( 1
16) and f ′( 1

16) exist and are constant. To
prove that

lim
k→∞

h′k

(
1

16

)
= 0 and lim

k→∞
hk

(
1

16

)
= 0. (10)

we prove that

lim
k→∞

f ′k

(
1

16

)
= 0 and lim

k→∞
fk

(
1

16

)
= 0. (11)

It is straightforward to observe that (11) yields (10). From
Theorem 10 it follows that µ(Ak) exists for each k ∈ N.



The series
∑∞
k=0 µ

(
Ak

)
is convergent and hence

limk→∞ µ
(
Ak

)
= 0.

So, from the transfer lemma (we know that the functions
fk have the same dominant singularity) we obtain:

lim
k→∞

f ′k

(
1

16

)
= 0. (12)

Similarly, let us consider the series
∑∞
k=0 fk

(
1
16

)
. This

series is bounded by f
(

1
16

)
= 1

2 and the values fk
(

1
16

)
are



non-negative †, so it also must be convergent. Hence:

lim
k→∞

fk

(
1

16

)
= 0. (13)

�

By Theorem 19 and Lemma 20 we get:
Theorem 21. The density of the class Aω exists and is
about 70%.

†It could be justified as follows: for each i ∈ N, fi(1/16) ≥ 0 because
fi(z) =

∑∞
n=0 ainz

n and the series is convergent at z0 = 1
16

and then
the sum

∑∞
n=0 ain(

1
16

)n is also non-negative.



Problem 1 Investigate the logics Int
→,∨,⊥
k and Cl

→,∨,⊥
k

and give an answer if they are asymptotically identical.


