APPLICATIONS OF ALGEBRA ZAKOPANE 2009

On a finitely axiomatizable Kripke incomplete logic containing KTB Zofia Kostrzycka Opole University of Technology

Brouwerian logic KTB

Axioms CL and

$$
K := \Box(p \to q) \to (\Box p \to \Box q)
$$

\n
$$
T := \Box p \to p
$$

\n
$$
B := p \to \Box \Diamond p
$$

and rules: (MP), (Sub) i (RG).

Kripke frames for KTB

Definition 1. By a Kripke frame we mean a pair $\mathfrak{F} = \langle W, R \rangle$ where W -nonempty set and R relation on W .

In the case of the logic KTB , R is reflexive and symmetric.

Elements of W are called points and the relation R is an accessibility relation: xRy means: 'y is accessible from x' .

Valuation $\mathfrak F$ is a function $V : Var \to W$ and can be extended to homomorphism.

Then we define for each $x \in W$:

$$
x \models p \quad \text{iff} \quad x \in V(p)
$$
\n
$$
x \models \alpha \land \beta \quad \text{iff} \quad x \models \alpha \quad \text{i} \quad x \models \beta
$$
\n
$$
x \models \alpha \lor \beta \quad \text{iff} \quad x \models \alpha \quad \text{or} \quad x \models \beta
$$
\n
$$
x \models \alpha \rightarrow \beta \quad \text{iff} \quad x \not\models \alpha \quad \text{or} \quad x \models \beta
$$
\n
$$
x \models \neg \alpha \quad \text{iff} \quad x \not\models \alpha
$$
\n
$$
x \models \Box \alpha \quad \text{iff} \quad x \not\models \alpha
$$
\n
$$
x \models \Box \alpha \quad \text{iff} \quad \text{for any } y \in W \quad \text{if} \quad xRy \quad \text{then} \quad y \models \alpha
$$

A formula α is a tautology of the logic KTB, if it is true in every reflexive and symmetric Kripke model.

Extensions of KTB

 $T_n = KTB \oplus (4_n)$, where

$$
(4_n) \qquad \Box^n p \rightarrow \Box^{n+1} p
$$

$$
(tran_n) \quad \forall x, y \text{ (if } xR^{n+1}y \text{ then } xR^{n}y)
$$

where the relation R^n is the *n*-step accessibility relation defined below:

$$
xR^{0}y \quad \text{iff} \quad x = y
$$

$$
xR^{n+1}y \quad \text{iff} \quad \exists_{z} (xR^{n}z \land zRy)
$$

 $KTB \subset ... \subset T_{n+1} \subset T_n \subset ... \subset T_2 \subset T_1 = S5.$ **Definition 2.** A logic L is Kripke complete, if there is a class C of Kripke frames, such that:

- 1. for every formula $\psi \in L$ and any frame $\mathfrak{F} \in \mathcal{C}$ we have $\mathfrak{F} \models \psi.$
- 2. for every formula $\psi \notin L$, there is a Kripke frame $\mathfrak{G} \in \mathcal{C}$ such that $\mathfrak{G} \not\models \psi$.

Fact 3. The logics T_n are Kripke complete.

Problem

Miyazaki in $[1]$ defined one Kripke incomplete logic in $NEXT(\mathbf{T}_2)$ and a continuum of Kripke incomplete logics in $NEXT(\mathbf{T}_5)$.

Kostrzycka in [2] defined a continuum Kripke incomplete logics in $NEXT(\mathbf{T_2})$.

[1] Y. Miyazaki, Kripke incomplete logics containing KTB, Studia Logica 85, (2007), 311-326.

[2] Kostrzycka Z, On non compact logics in $NEXT(\textbf{KTB})$. Mathematical Logic Quarterly 54, no. 6, (2008), 617- 624.

Question: Is there a KTB - logic which is Kripke incomplete and finitely axiomatizable?

The aim

To define a logic L_{*} and a formula ψ such that $\psi \notin L_{*}$ and

for any Kripke frame $\mathfrak F$ the following implication holds:

if $\mathfrak{F} \models L_*,$ then $\mathfrak{F} \models \psi.$

Axioms for L_*

Exclusive formulas:

$$
F_* := p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4 \wedge \neg p_5,
$$

\n
$$
F_0 := \neg p_* \wedge p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4 \wedge \neg p_5,
$$

\n
$$
F_1 := \neg p_* \wedge \neg p_0 \wedge p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4 \wedge \neg p_5,
$$

\n
$$
F_2 := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge p_2 \wedge \neg p_3 \wedge \neg p_4 \wedge \neg p_5,
$$

\n
$$
F_3 := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge p_3 \wedge \neg p_4 \wedge \neg p_5,
$$

\n
$$
F_4 := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge p_4 \wedge \neg p_5,
$$

\n
$$
F_5 := \neg p_* \wedge \neg p_0 \wedge \neg p_1 \wedge \neg p_2 \wedge \neg p_3 \wedge \neg p_4 \wedge p_5,
$$

 $Q := \{F_1 \wedge \Diamond F_* \wedge \Diamond (F_0 \wedge \neg \Diamond F_2 \wedge \neg \Diamond F_3 \wedge \neg \Diamond F_4) \wedge$ $\wedge \Diamond (F_2 \wedge \Diamond (F_3 \wedge \Diamond (F_4 \wedge \Diamond F_5)) \wedge \neg \Diamond F_4 \wedge \neg \Diamond F_5) \wedge \neg \Diamond F_3$ $\rightarrow \Diamond (F_* \land \Diamond F_0 \land \Diamond F_2 \land \Diamond F_3 \land \Diamond F_4 \land \Diamond F_5).$

$$
G := \{F_5 \wedge \Diamond [F_4 \wedge \Diamond (F_3 \wedge \Diamond (F_2 \wedge \Diamond (F_1 \wedge \Diamond F_0))))] \wedge \Diamond F_*
$$

$$
\wedge \left(\bigwedge_{i=0}^5 F_i \rightarrow \Box p\right) \wedge \Box^2 \left((p \wedge F_*) \rightarrow \bigwedge_{i=0}^5 \Diamond F_i\right) \wedge
$$

$$
\wedge \Box^2 \left(F_* \vee \bigvee_{i=0}^5 F_i\right) \wedge \Box^2 [\Box (F_5 \vee (F_* \wedge p)) \rightarrow \Diamond (F_5 \wedge \Diamond F_4)] \wedge
$$

$$
\wedge \bigwedge_{i=0}^4 \Box^2 [\Box (F_i \vee (F_* \wedge p)) \rightarrow \Diamond (F_i \wedge \Diamond F_{i+1})] \rightarrow \Diamond F_0
$$

The role of G:

$$
P := \{ r \land \bigwedge_{i=1}^{3} (A_i \land B_i \land C_i) \} \rightarrow \Diamond^2 \{ r \land \Box(r \rightarrow (q_1 \lor q_2 \lor q_3)) \},
$$

\nwhere
\n
$$
A_i := \Box^2(q_i \rightarrow r), B_i := \Box^2(r \rightarrow \Diamond q_i), \text{ for } i = 1, 2, 3
$$

\n
$$
C_1 := \Box^2 \neg (q_2 \land q_3), C_2 := \Box^2 \neg (q_1 \land q_3), C_3 := \Box^2 \neg (q_1 \land q_2).
$$

Definition 4. $L_* := T_2 \oplus G \oplus Q \oplus P$.

Formuła ψ

$$
H_* := \neg s_0 \land \neg s_1 \land \neg s_2 \land \neg s_3 \land \neg s_4,
$$

\n
$$
H_0 := \Box \neg s_0 \land \neg s_1 \land s_2 \land s_3 \land s_4,
$$

\n
$$
H_1 := \neg s_0 \land \Box \neg s_1 \land \neg s_2 \land s_3 \land s_4,
$$

\n
$$
H_2 := s_0 \land \neg s_1 \land \Box \neg s_2 \land \neg s_3 \land s_4,
$$

\n
$$
H_3 := s_0 \land s_1 \land \neg s_2 \land \Box \neg s_3 \land \neg s_4,
$$

\n
$$
H_4 := s_0 \land s_1 \land \neg s_2 \land \neg s_3 \land \Box \neg s_4,
$$

\n
$$
H_5 := \neg s_0 \land s_1 \land \neg s_2 \land s_3 \land \neg s_4,
$$

 $\psi := \neg \{ H_5 \land \Diamond [H_4 \land \Diamond (H_3 \land \Diamond (H_2 \land \Diamond (H_1 \land \Diamond H_0 \land \Diamond H_*))) \}$.

Lemma 5. For every Kripke frame $\tilde{\mathfrak{F}}$ it holds: if $\mathfrak{F} \models L_*,$ then $\mathfrak{F} \models \psi$.

Proof: Suppose that there is a Kripke frame $\mathfrak F$ such that $\mathfrak{F} \models L_*$ and $\mathfrak{F} \not\models \psi$.

Then the structure $\mathfrak F$ consists of at least seven different points $x_*, x_0, x_1, x_2, x_3, x_4, x_5$ such that: $x_1Rx_*,$ and x_iRx_j iff $|i - j| \le 1$ for $i, j = 0, ..., 4$ i $x_4 R x_5$.

We define a valuation for the variables $p_0, ..., p_5, p_*$:

 $V(p_i) = \{x_i\}$ for $i = 0, ..., 5$, and $V(p_*) = \{x_*\}.$ That gives us:

 $V(F_i) = \{x_i\}$ for $i = 0, ..., 5,$ and $V(F_*) = \{x_*\}.$

$$
x_5 \models F_5
$$
 $x_4 \models F_4$ $x_3 \models F_3$ $x_2 \models F_2$ $x_1 \models F_1$ $x_0 \models F_0$

The formula Q has to be true under that valuation, hence it must hold: $x_* R x_j$, for $j = 0, 2, 3, 4, 5$.

Let us consider a new valuation defined on the obtained frame:

$$
x_* \models p_*, \quad x_i \models p_i, \quad \text{for} \quad i = 0, 1, 2, 3, 4, 5
$$

For any x such that x sees only the point x^* we define: $x \models p_*$ and $x \not\models p$.

In the other points we define: if xRy and $y \models p_i$, then $x \models p_k$ for $k \neq i$ and $i = 0, 1, ..., 5$ and $k = 1, ..., 4$. For such valuation we obtain:

$$
x_* \models F_* \land p \quad \text{iff} \quad x = x_*
$$

$$
x \models F_0 \quad \text{iff} \quad x = x_0
$$

$$
x \models F_5 \quad \text{iff} \quad x = x_5
$$

The antecedent of the formula G is true at x_5 ; the consequent of G has to be true at x_5 - hence x_5Rx_0 . Then we obtain:

$$
P := \{r \wedge \bigwedge_{i=1}^{3} (A_i \wedge B_i \wedge C_i)\} \rightarrow \Diamond^2 \{r \wedge \Box(r \rightarrow (q_1 \vee q_2 \vee q_3))\},
$$

\nwhere
\n
$$
A_i := \Box^2(q_i \rightarrow r), B_i := \Box^2(r \rightarrow \Diamond q_i), \text{ for } i = 1, 2, 3
$$

\n
$$
C_1 := \Box^2(\Box q_2 \wedge q_3), C_2 := \Box^2(\Box q_1 \wedge q_3), C_3 := \Box^2(\Box q_1 \wedge q_2).
$$

Formula P is false with the following valuation:

$$
V_*(r) = \{x_*, x_0, ..., x_5\}, \quad V_*(q_1) = \{x_1, x_4\}, \quad V_*(q_2) = \{x_2, x_5\}
$$

$$
V_*(q_3) = \{x_*\}.
$$

We take x_3 . It holds: $x_3 \models r$ and $x_3 \models A_i \wedge B_i \wedge C_i$ for $i = 1, 2, 3$. However $x_{3n} \not\models q_1 \vee q_2 \vee q_3$ for $n = 0, 1$, and then $x_3 \not \models \Diamond^2 \{r \wedge \Box(r \rightarrow (q_1 \vee q_2 \vee q_3))\}.$

Hence: $x_3 \not\models P$.

Lemma 6. $\psi \notin L_*$.

Proof. We use a general frame. General frames are relational counterparts of modal algebras. Define:

 $\mathfrak{G} = \langle W, R, T \rangle$ where:

$$
W := \{x_{*}\} \cup \{x_{i}, i \in \mathbb{Z}\},
$$

\n
$$
R := \{(x_{*}, x_{i} \text{ for each } i \in \mathbb{Z}\} \cup
$$

\n
$$
\cup \{(x_{i}, x_{j}) \text{ iff } |i - j| \leq 1; \text{ for any } i, j \in \mathbb{Z}\},
$$

\n
$$
T := \{X \subset W : X \text{ is finite or } W \setminus X \text{ is finite}\}.
$$

 $\mathfrak{G} \models P, Q, G.$

Define a valuation:

$$
V(s_0) = \{x_2, x_3, x_4\}, V(s_1) = \{x_3, x_4, x_5\}, V(s_2) = \{x_0, x_4, x_5\},
$$

$$
V(s_3) = \{x_0, x_1, x_5\}, V(s_4) = \{x_0, x_1, x_2\}.
$$

 \circ

Then for

 $\psi := \neg \{ H_5 \land \Diamond [H_4 \land \Diamond (H_3 \land \Diamond (H_2 \land \Diamond (H_1 \land \Diamond H_0 \land \Diamond H_*)))] \}.$

we obtain $\mathfrak{G} \not\models \psi$.

Theorem 7. The logic $L_* = T_2 \oplus G \oplus Q \oplus P$ is Kripke incomplete.

[3] Kostrzycka Z., On a finitely axiomatizable Kripke incomplete logic containing KTB, accepted at Journal of Logic and Computation.