TANCL OXFORD 2007

On the existence of a continuum of logics in $\begin{tabular}{l} NEXT(KTB)\\ Cofia Kostrzycka \end{tabular}$

Extension of the Brouwer logic $\ensuremath{\mathbf{KTB}}$

 $T_n = KTB \oplus (4_n)$, where

$$K \qquad \Box(p \to q) \to (\Box p \to \Box q)$$
$$T \qquad \Box p \to p$$
$$B \qquad p \to \Box \Diamond p$$
$$(4_n) \qquad \Box^n p \to \Box^{n+1} p$$

$(tran_n) \quad \forall_{x,y} (if \ x R^{n+1}y \ then \ x R^n y)$

where the relation of n-step accessibility is defined inductively as follows:

$$\begin{array}{rl} xR^{0}y & \text{iff} & x = y \\ xR^{n+1}y & \text{iff} & \exists_{z} (xR^{n}z \ \land \ zRy) \end{array}$$

$\mathrm{KTB} \subset ... \subset \mathrm{T}_{n+1} \subset \mathrm{T}_n \subset ... \subset \mathrm{T}_2 \subset \mathrm{T}_1 = \mathrm{S5}.$

Kripke frames for T_2 logic

A Kripke frame is a pair $\mathfrak{F} = \langle W, R \rangle$, where the relation R is reflexive, symmetric and 2-transitive.

Denote $\alpha := p \land \neg \Diamond \Box p$. Definition 1.

$$A_{1} := \neg p \land \Box \neg \alpha$$
$$A_{2} := \neg p \land \neg A_{1} \land \Diamond A_{1}$$
$$A_{3} := \alpha \land \Diamond A_{2}$$

For $n \ge 2$:

$$A_{2n} := \neg p \land \Diamond A_{2n-1} \land \neg A_{2n-2}$$
$$A_{2n+1} := \alpha \land \Diamond A_{2n} \land \neg A_{2n-1}$$

Theorem 2. The formulas $\{A_i\}, i \ge 1$ are non-equivalent in the logic T_2 .

Proof. Let us take the following model $\mathfrak{M} = \langle W, R, V \rangle$:

where $\alpha := p \land \neg \Diamond \Box p$.

For any $i \ge 1$ and for any $x \in W$ the following holds:

$$x \models A_i$$
 iff $x = y_i$

Theorem 3. There are infinitely many non-equivalent formulas written in one variable in the logic T_2 .

[1] Kostrzycka Z., On formulas in one variable in NEXT(KTB), Bulletin of the Section of Logic, Vol.35:2/3, (2006), 119-131.

Wheel frames

Definition 4. Let $n \in \omega$ and $n \geq 5$. The wheel frame $\mathfrak{W}_n = \langle W, R \rangle$ where

 $W = rim(W) \cup h$ and $rim(W) := \{1, 2, ..., n\}$ and $h \notin rim(W)$.

 $R := \{(x,y) \in (rim(W))^2 : |x-y| \le 1(mod(n-1))\} \cup \{(h,h)\} \cup \{(h,x), (x,h) : x \in rim(W)\}.$

A diagram of the \mathfrak{W}_8

Lemma 5. For $m > n \ge 5$, $L(\mathfrak{W}_n) \not\subseteq L(\mathfrak{W}_m)$. **Lemma 6.** For $m \ge n \ge 5$, suppose there is a *p*-morphism from \mathfrak{W}_m to \mathfrak{W}_n . Then *m* is divisible by *n*.

On the base of these two lemmas and by using the splitting technique effectively, Y. Miyazaki constructed a continuum of normal modal logics over $\rm T_2$ logic.

[2] Miyazaki Y. Normal modal logics containing KTB with some finiteness conditions, Advances in Modal Logic, Vol.5, (2005), 171-190. Let:

$$\beta := \neg \Box p \land \Diamond \Box p$$

$$\gamma := \beta \land \Diamond A_1 \land \neg \Diamond A_2$$

$$\varepsilon := \beta \land \neg \Diamond A_1 \land \neg \Diamond A_2$$

$$C_k := \Box^2[A_{k-1} \to \Diamond A_k], \text{ for } k > 2$$

$$D_k := \Box^2[(A_k \land \neg \Diamond A_{k+1}) \to \Diamond \varepsilon],$$

$$E := \Box^2(\Box p \to \Diamond \gamma)$$

$$F_k := (\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E) \to \Diamond^2 A_k.$$

Lemma 7. Let $k \ge 5$ and k- odd number.

 $\mathfrak{W}_i \not\models F_k$ iff *i* is divisible by k+2.

Proof. (\Leftarrow)

Let i = k + 2. We define the following valuation in the frame \mathfrak{W}_i :

where $\gamma = \beta \land \Diamond A_1 \land \neg \Diamond A_2$ $\beta = \neg \Box p \land \Diamond \Box p$

where $F_7 = (\Box p \land \bigwedge_{i=2}^6 C_i \land D_6 \land E) \rightarrow \Diamond^2 A_7.$

Then the point 1 is the only point such that $1 \models \Box p$. And further:

$$\begin{array}{cccc} h & \models & p, \\ 2 & \models & \gamma, \\ 3 & \models & A_1, \\ 4 & \models & A_2, \\ \vdots \\ k+1 & \models & A_{k-1}, \\ k+2 & \nvDash & A_k, \text{ and } k+2 \models \varepsilon \end{array}$$

Then we see that for all j = 3, ..., k+1 we have: $j \models A_n$ iff n = j-2. We conclude that for all j = 3, ..., k+1 it holds that: $j \models \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E$. Then the predecessor of the formula F_k : $(\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E)$ is true only at the point 1. At the point 1 we also have: $1 \not\models \diamondsuit^2 A_k$, because

there is no point in the frame satisfying A_k . Hence at the point 1, the formula F_k is not true.

In the case when i = m(k+2) for some $m \neq 1$, $m \in \omega$ we define the valuation similarly:

$$\begin{array}{rcl} h &\models p, \\ 1+l(k+2) &\models p, \\ 2+l(k+2) &\models p, \\ 3+l(k+2) &\not\models p, \\ 4+l(k+2) &\not\models p, \\ \vdots \end{array}$$

$$\begin{array}{rcl} 2n-1+l(k+2) &\models p, & \text{for } n \geq 3 & \text{and } 2n-1 \leq i, \\ 2n+l(k+2) &\not\models p, & \text{for } n \geq 3 & \text{and } 2n < i. \end{array}$$

for all *l* such that: $0 \le l \le m$. The rest of the proof in this case proceeds analogously to the case i = k + 2.

 (\Rightarrow) Suppose there is a point $x \in W$ such that:

$$x \models (\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E)$$
$$x \models \neg \Diamond^2 A_k.$$

First, let us observe that $x \neq h$ because $x \models \Diamond \gamma$. Let x = 1. Then we know that there is a point 2 such that $2 \models \gamma$ what involves existence of the next point 3 such that $3 \models A_1$. Because of C_i , i = 1, 2, ..., k - 1 we know that there is a sequence of points 3, 4, ..., k + 1 such that $n \models A_{n-2}$ for $2 \leq n \leq k+1$ and $k+1 \models \neg \Diamond A_k$. Then the point k+2 next to the point k+1, has to validate the

formula ε . Because $h \not\models \varepsilon$ and $k, k + 1 \not\models \varepsilon$ then it must be a rim element. It has to see some point validating $\Box p$ and if it sees the point 1 then we have that i = k + 2. But suppose that k+2 does not see the point 1. Anyway, it has to see another point validating $\Box p$. Say, it is the point k+3. But it has to be $k+3 \models \Diamond \gamma$. Because $h \not\models \gamma$ then it has to be other point, say k + 4 such that $k + 4 \models \gamma$. Then there has to be a next point k + 5 different from h such that $k + 5 \models A_1$. Again from C_i for i = 1, 2, ..., k - 1we have to have: $k + 6 \models A_2, ..., 2k + 3 \models A_{k-1}$. Then we have that there has to be a point 2k + 4 validating ε , and then some point validating $\Box p$. If it is the point 1 then we have i = 2(k + 2). If not, then we have analogously another sequence of k + 2 points and so on.

The main theorem is the following:

Theorem 8. There is a continuum of normal modal logics over T_2 logic, defined by formulas written in one variable.

Proof. Let $Prim := \{n \in \omega : n + 2 \text{ is prime}, n \geq 5\}$. Let $X, Y \subset Prim$ and $X \neq Y$. Consider logics: $L_X := \mathbf{T_2} \oplus \{F_k : k \in X\}$ and $L_Y := \mathbf{T_2} \oplus \{F_k : k \in Y\}$. From Lemma 7 we know that if $j \notin X$ then $F_j \in L_Y$. That means that we are able to define a continuum of different logics above $\mathbf{T_2}$ by formulas of one variable.

[3] Kostrzycka Z., On the existence of a continuum of logics in NEXT(KTB $\oplus \Box^2 p \to \Box^3 p$), accepted to Bulletin of the Section of Logic.