TANCL OXFORD 2007

On the existence of a continuum of logics in NEXT(KTB) Zofia Kostrzycka

Extension of the Brouwer logic KTB

 $T_n = KTB \oplus (4_n)$, where

$$
K \qquad \Box(p \to q) \to (\Box p \to \Box q)
$$

\n
$$
T \qquad \Box p \to p
$$

\n
$$
B \qquad p \to \Box \Diamond p
$$

\n
$$
(4_n) \qquad \Box^{n} p \to \Box^{n+1} p
$$

$(trann)$ $\forall x, y$ (if $xR^{n+1}y$ then $xR^{n}y$)

where the relation of n-step accessibility is defined inductively as follows:

$$
xR^{0}y \quad \text{iff} \quad x = y
$$

$$
xR^{n+1}y \quad \text{iff} \quad \exists_{z} (xR^{n}z \land zRy)
$$

KTB $\subset ... \subset T_{n+1} \subset T_n \subset ... \subset T_2 \subset T_1 = S5.$

Kripke frames for T_2 logic

A Kripke frame is a pair $\mathfrak{F} = \langle W, R \rangle$, where the relation R is reflexive, symmetric and 2-transitive.

Denote $\alpha := p \wedge \neg \Diamond \Box p$. Definition 1.

$$
A_1 := \neg p \land \Box \neg \alpha
$$

\n
$$
A_2 := \neg p \land \neg A_1 \land \Diamond A_1
$$

\n
$$
A_3 := \alpha \land \Diamond A_2
$$

For $n \geq 2$:

$$
A_{2n} := \neg p \land \Diamond A_{2n-1} \land \neg A_{2n-2}
$$

$$
A_{2n+1} := \alpha \land \Diamond A_{2n} \land \neg A_{2n-1}
$$

Theorem 2. The formulas $\{A_i\}$, $i \geq 1$ are non-equivalent in the logic T_2 .

Proof. Let us take the following model $\mathfrak{M} = \langle W, R, V \rangle$:

where $\alpha := p \wedge \neg \Diamond \Box p$.

For any $i \geq 1$ and for any $x \in W$ the following holds:

$$
x \models A_i \quad \text{iff} \quad x = y_i
$$

Theorem 3. There are infinitely many non-equivalent formulas written in one variable in the logic T_2 .

[1] Kostrzycka Z., On formulas in one variable in $NEXT(KTB)$, Bulletin of the Section of Logic, Vol.35:2/3, (2006), 119- 131.

Wheel frames

Definition 4. Let $n \in \omega$ and $n \geq 5$. The wheel frame $\mathfrak{W}_n = \langle W, R \rangle$ where

 $W = rim(W) \cup h$ and $rim(W) := \{1, 2, ..., n\}$ and $h \notin$ $rim(W)$.

 $R := \{(x, y) \in (rim(W))^2 : |x - y| \leq 1 (mod(n - 1))\}$ $\{(h,h)\}\cup\{(h,x),(x,h):x\in rim(W)\}.$

A diagram of the \mathfrak{W}_8

Lemma 5. For $m > n \geq 5$, $L(\mathfrak{W}_n) \nsubseteq L(\mathfrak{W}_m)$. **Lemma 6.** For $m \ge n \ge 5$, suppose there is a p-morphism from \mathfrak{W}_m to \mathfrak{W}_n . Then m is divisible by n.

On the base of these two lemmas and by using the splitting technique effectively, Y. Miyazaki constructed a continuum of normal modal logics over T_2 logic.

[2] Miyazaki Y. Normal modal logics containing KTB with some finiteness conditions, Advances in Modal Logic, Vol.5, (2005), 171-190.

Let:

$$
\beta := \neg \Box p \land \Diamond \Box p
$$

\n
$$
\gamma := \beta \land \Diamond A_1 \land \neg \Diamond A_2
$$

\n
$$
\varepsilon := \beta \land \neg \Diamond A_1 \land \neg \Diamond A_2
$$

$$
C_k := \square^2[A_{k-1} \to \Diamond A_k], \text{ for } k > 2
$$

\n
$$
D_k := \square^2[(A_k \land \neg \Diamond A_{k+1}) \to \Diamond \varepsilon],
$$

\n
$$
E := \square^2(\square p \to \Diamond \gamma)
$$

$$
F_k := (\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E) \to \Diamond^2 A_k.
$$

Lemma 7. Let $k \geq 5$ and k - odd number.

 $\mathfrak{W}_i\not\models F_k$ iff i is divisible by $k+2.$

Proof. (\Leftarrow)

Let $i = k + 2$. We define the following valuation in the frame \mathfrak{W}_i :

$$
h \models p,
$$
\n
$$
1 \models p,
$$
\n
$$
2 \models p,
$$
\n
$$
3 \not\models p,
$$
\n
$$
4 \not\models p,
$$
\n
$$
\vdots
$$
\n
$$
2n - 1 \models p, \text{ for } n \ge 3 \text{ and } 2n - 1 \le i,
$$
\n
$$
2n \not\models p, \text{ for } n \ge 3 \text{ and } 2n < i.
$$

where $\gamma = \beta \wedge \Diamond A_1 \wedge \neg \Diamond A_2$ $\beta = \neg \Box p \wedge \Diamond \Box p$

where $F_7 = (\Box p \land \bigwedge_{i=2}^6 C_i \land D_6 \land E) \rightarrow \Diamond^2 A_7$.

Then the point 1 is the only point such that $1 \models \Box p$. And further:

$$
h \models p,
$$

\n
$$
2 \models \gamma,
$$

\n
$$
3 \models A_1,
$$

\n
$$
4 \models A_2,
$$

\n
$$
\vdots
$$

\n
$$
k+1 \models A_{k-1},
$$

\n
$$
k+2 \not\models A_k, \text{ and } k+2 \models \varepsilon
$$

Then we see that for all $j = 3, ..., k+1$ we have: $j \models A_n$ iff $n = j - 2$. We conclude that for all $j = 3, ..., k + 1$ it holds that: $j \models \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E$. Then the predecessor of the formula F_k : $\overline{CD} \wedge \overline{N}_{i=2}^{k-1} C_i \wedge D_{k-1} \wedge E$) is true only at the point 1. At the point 1 we also have: $1 \not\models \Diamond^2 A_k$, because

there is no point in the frame satisfying A_k . Hence at the point 1, the formula F_k is not true.

In the case when $i = m(k + 2)$ for some $m \neq 1$, $m \in \omega$ we define the valuation similarly:

$$
h \models p,
$$

\n
$$
1 + l(k+2) \models p,
$$

\n
$$
2 + l(k+2) \models p,
$$

\n
$$
3 + l(k+2) \not\models p,
$$

\n
$$
4 + l(k+2) \not\models p,
$$

\n
$$
\vdots
$$

\n
$$
2n - 1 + l(k+2) \not\models p, \text{ for } n \ge 3 \text{ and } 2n - 1 \le i,
$$

\n
$$
2n + l(k+2) \not\models p, \text{ for } n \ge 3 \text{ and } 2n < i.
$$

for all l such that: $0 \leq l \leq m$. The rest of the proof in this case proceeds analogously to the case $i = k + 2$.

 (\Rightarrow) Suppose there is a point $x \in W$ such that:

$$
x \models (\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E)
$$

$$
x \models \neg \Diamond^2 A_k.
$$

First, let us observe that $x \neq h$ because $x \models \Diamond \gamma$. Let $x = 1$. Then we know that there is a point 2 such that $2 \models \gamma$ what involves existence of the next point 3 such that 3 $\models A_1$. Because of C_i , $i=1,2,...,k-1$ we know that there is a sequence of points $3, 4, ..., k + 1$ such that $n \models A_{n-2}$ for $2 \leq n \leq k+1$ and $k+1 \models \neg \Diamond A_k$. Then the point $k + 2$ next to the point $k + 1$, has to validate the

formula ε . Because $h \not\models \varepsilon$ and $k, k + 1 \not\models \varepsilon$ then it must be a rim element. It has to see some point validating $\Box p$ and if it sees the point 1 then we have that $i = k + 2$. But suppose that $k + 2$ does not see the point 1. Anyway, it has to see another point validating $\Box p$. Say, it is the point k + 3. But it has to be $k + 3 \models \Diamond \gamma$. Because $h \not\models \gamma$ then it has to be other point, say $k + 4$ such that $k + 4 \models \gamma$. Then there has to be a next point $k + 5$ different from h such that $k + 5 \models A_1$. Again from C_i for $i = 1, 2, ..., k - 1$ we have to have: $k + 6 \models A_2, ..., 2k + 3 \models A_{k-1}$. Then we have that there has to be a point $2k + 4$ validating ε , and then some point validating $\Box p$. If it is the point 1 then we have $i = 2(k + 2)$. If not, then we have analogously another sequence of $k + 2$ points and so on.

 \Box

The main theorem is the following:

Theorem 8. There is a continuum of normal modal logics over T_2 logic, defined by formulas written in one variable.

Proof. Let $Prim := \{n \in \omega : n+2 \text{ is prime}, n \geq 5\}.$ Let $X,Y\subset Prim$ and $X\neq Y.$ Consider logics: $L_X:={\bf T_2}\oplus\{F_k:$ $k\in X\}$ and $L_Y:={\bf T_2}\oplus\{F_k:k\in Y\}.$ From Lemma 7 we know that if $j \notin X$ then $F_j \in L_Y$. That means that we are able to define a continuum of different logics above T_2 by formulas of one variable.

[3] Kostrzycka Z., On the existence of a continuum of logics in NEXT(KTB $\oplus \Box^2 p \to \Box^3 p$), accepted to Bulletin of the Section of Logic.