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Abstract

In this paper we consider formulas in one variable in the normal logic
T2 = KTB⊕�2p → �3p. Next, we use the formulas to define a continuum
of logics over T2.

1 Introduction
In this paper we investigate normal modal logics over T2 = KTB⊕�2p → �3p. The
KTB logic is known as the Brouwer system and is an example of a non-transitive
logic. It is characterized by the class of reflexive symmetric and non-transitive
frames. There is very few results concerning this logic; some of them are included
in [1] - [5].
Let us notice that adding the axiom �2p → �3p to the Brouwer logic involves the
following first order condition on frames:

(tran2) ∀x,y(if xR3y then xR2y).

The above property is known as a two-step transitivity.

2 Formulas in one variable in NEXT (T2)

In this section we remind ourselves the infinite sequence of non-equivalent formulas
in one variable defined in [2]. Denote α := p ∧ ¬♦�p.

Definition 1.

A1 := ¬p ∧�¬α,

A2 := ¬p ∧ ¬A1 ∧ ♦A1,

A3 := α ∧ ♦A2,

For n ≥ 2:

A2n := ¬p ∧ ♦A2n−1 ∧ ¬A2n−2,

A2n+1 := α ∧ ♦A2n ∧ ¬A2n−1.

Let us define the following model (see Figure 1):

Definition 2. M = 〈W,R, V 〉, where

W := {x1, x2} ∪ {yi, i ≥ 1}.
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The relation R is reflexive, symmetric, 2-step accessible and:

x1Rx2, x2Ryi for any i ≥ 1,

yiRyj if |i− j| ≤ 1 for any i, j ≥ 1.

The valuation is the following:

V (p) := {x1, x2} ∪ {y2m+1,m ≥ 1}.
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y1 |= ¬p y2 |= ¬p y3 |= p y4 |= ¬p y5 |= p y6 |= ¬p

x1 |= �p

x2 |= p

Figure 1.

Lemma 3. For any i ≥ 1 and for any x ∈ W the following holds:

x |= Ai iff x = yi.

Proof. A detailed proof is presented in [2]. �

Theorem 4. The formulas {Ai}, i ≥ 1 are non-equivalent in the logic T2.

Proof. Obvious.
�

3 The existence of a continuum of logics over T2

Yutaka Miyazaki in [4] proved the existence of a continuum of logics over KTB.
First, he showed the existence of a continuum of orthologics and then applied an
embedding from orthologics to KTB logics. In [5] Y. Miyazaki proved the existence
of a continuum of logics over T2. In the proof he considered logics determined by
the so-called wheel frames.

Definition 5. For n ∈ ω, n ≥ 5, the wheel frame Wn = 〈W,R〉 of degree n consists
of the following set and binary relation: W = rim(W ) ∪ h, where rim(W ) :=
{1, 2, ..., n} and h 6∈ rim(W ). Any element in rim(W ) is called a rim element,
whereas the element h - the hub element. The relation R is defined as: R :=
{(x, y) ∈ (rim(W ))2 : |x − y| ≤ 1(mod(n − 1))} ∪ {(h, h)} ∪ {(h, x), (x, h) : x ∈
rim(W )}.

For example in Figure 2 we present a diagram of the W8.
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Figure 2.

Y.Miyazaki proved the following two lemmas (Proposition 19, Lemma 20 from [5]):

Lemma 6. For m > n ≥ 5, L(Wn) 6⊆ L(Wm).

Lemma 7. For m ≥ n ≥ 5, suppose there is a p-morphism from Wm to Wn. Then
m is divisible by n.

On the base of these two lemmas and by using the splitting technique effectively, Y.
Miyazaki constructed a continuum of normal modal logics over KTB⊕�2p → �3p
logic.
Below, we present an improved method (in comparison to the one from [2]) for
obtaining a continuum of logics above T2. Actually, we axiomatize the logics deter-
mined by wheel frames with formulas in one variable. Let us define new formulas
for k ∈ ω:

Definition 8.

Ck := �2[Ak−1 → ♦Ak], for k > 2,

Dk := �2[(Ak ∧ ¬♦Ak+1) → ♦ε],
E := �2(�p → ♦γ),

Fk := (�p ∧
k−1∧
i=2

Ci ∧Dk−1 ∧ E) → ♦2Ak,

where
β := ¬�p ∧ ♦�p,

γ := β ∧ ♦A1 ∧ ¬♦A2,

ε := β ∧ ¬♦A1 ∧ ¬♦A2.

Lemma 9. Let k ≥ 5 and k be an odd number. Then Wi 6|= Fk iff i is divisible by
k + 2.
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Proof. (⇐)
Let i = k + 2. We define the following valuation in the frame Wi:

h |= p,

1 |= p,

2 |= p,

3 6|= p,

4 6|= p,

2n− 1 |= p, for n ≥ 3 and 2n− 1 ≤ i,

2n 6|= p, for n ≥ 3 and 2n < i.

Then the point 1 is the only point such that 1 |= �p. And further:

h |= p,

2 |= γ,

3 |= A1,

4 |= A2,

k + 1 |= Ak−1,

k + 2 6|= Ak, and k + 2 |= ε

Then we see that for all j = 3, ..., k + 1 we have: j |= An iff n = j− 2. We conclude
that for all j = 1, 2, ..., k + 1 it holds that: j |=

∧k−1
i=2 Ci ∧ Dk−1 ∧ E. Then the

predecessor of the formula Fk: (�p∧
∧k−1

i=2 Ci ∧Dk−1 ∧E) is true only at the point
1. At the point 1 we also have: 1 6|= ♦2Ak, because there is no point in the frame
satisfying Ak. Hence at the point 1, the formula Fk is not true.
In the case when i = m(k + 2) for some m 6= 1, m ∈ ω we define the valuation
similarly:

h |= p,

1 + l(k + 2) |= p,

2 + l(k + 2) |= p,

3 + l(k + 2) 6|= p,

4 + l(k + 2) 6|= p,

2n− 1 + l(k + 2) |= p, for n ≥ 3 and 2n− 1 + l(k + 2) ≤ i,

2n + l(k + 2) 6|= p, for n ≥ 3 and 2n + l(k + 2) < i.

for all l such that: 0 ≤ l < m. The rest of the proof in this case proceeds analogously
to the case i = k + 2.
(⇒) Suppose there is a point x ∈ W such that:

x |= (�p ∧
k−1∧
i=2

Ci ∧Dk−1 ∧ E)

x |= ¬♦2Ak.

First, let us observe that x 6= h because if h |= �p then for all x ∈ rim(W ) we
have x |= p. Hence there is no point x′ ∈ rim(W ) such that x′ |= γ. Then it is
impossible that at the point h formula (�p ∧

∧k−1
i=2 Ci ∧Dk−1 ∧E) is true. Then x

has to belong to rim(W ). Let x = 1. Then we know that there is a point 2 such
that 2 |= γ what involves existence of the next point 3 such that 3 |= A1. Because
of Ci, i = 1, 2, ..., k − 1 we know that there is a sequence of points 3, 4, ..., k + 1
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such that n |= An−2 for 2 ≤ n ≤ k + 1 and k + 1 |= ¬♦Ak. Then a point k + 2,
which is next to the point k + 1, has to validate the formula ε. Because h 6|= ε and
k, k + 1 6|= ε then it must be a new rim element. It has to see some point validating
�p and if it sees the point 1 then we have that i = k + 2. But suppose that k + 2
does not see the point 1. Anyway, it has to see another point validating �p. Say,
it is the point k + 3. But it has to be k + 3 |= ♦γ. Because h 6|= γ then it has to
be other point, say k + 4 such that k + 4 |= γ. Then there has to be a next point
k + 5 different from h such that k + 5 |= A1. Again from Ci for i = 1, 2, ..., k − 1
we have to have: k + 6 |= A2, ..., 2k + 3 |= Ak−1. Then we have that there has to
be a point 2k + 4 validating ε, and then some point validating �p. If it is the point
1 then we have i = 2(k + 2). If not, then we have analogously another sequence of
k + 2 points and so on.

�

The main theorem is the following:

Theorem 10. There is a continuum of normal modal logics over T2 defined by
formulas written in one variable.

Proof. Let Prim := {n ∈ ω : n+2 is prime, n ≥ 5}. Let X, Y ⊂ Prim and X 6= Y .
(Exactly: X 6⊆ Y and Y 6⊆ X). Consider logics: LX := T2 ⊕ {Fk : k ∈ X} and
LY := T2 ⊕ {Fk : k ∈ Y }. Let j ∈ Y \ X. Obviously: Fj ∈ LY . From Lemma 9
we know that Fj 6∈ LX , because Wj+2 6|= Fj and ∀i∈X [i 6= j ⇒ Wj+2 |= Fi].
That means that we are able to define a continuum of different logics above T2 by
formulas of one variable.

�
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