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Abstract

In this paper we consider formulas in one variable in the normal logic
T, = KTB @ O0%p — O0%p. Next, we use the formulas to define a continuum
of logics over Ts.

1 Introduction

In this paper we investigate normal modal logics over Ty = KTB®O?p — O03p. The
KTB logic is known as the Brouwer system and is an example of a non-transitive
logic. It is characterized by the class of reflexive symmetric and non-transitive
frames. There is very few results concerning this logic; some of them are included
in [1] - [5].

Let us notice that adding the axiom O0%p — [3p to the Brouwer logic involves the
following first order condition on frames:

(trang) Vi, (if xR then zR%y).

The above property is known as a two-step transitivity.

2 Formulas in one variable in NEXT(T,)

In this section we remind ourselves the infinite sequence of non-equivalent formulas
in one variable defined in [2]. Denote o :=p A =OUp.

Definition 1.

Ay = —p A O—a,
Ag == —p A=A A QA

A3 =aAN <>A2,
Forn > 2:
Aoy = pAQAy_1 AN Agy_a,
Aons1 = aNQAy N Ay, g.

Let us define the following model (see Figure 1):
Definition 2. 9 = (W, R, V'), where

W= {x1, 22} U{y;,i > 1}.



The relation R is reflexive, symmetric, 2-step accessible and:

xr1Rxo, wmoRy; for any i > 1,
yiRy; if |i—j] <1 forany i,j > 1.

The valuation is the following:

V(p) == {z1, 22} U {y2m41,m = 1}.
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Figure 1.

Lemma 3. For any i > 1 and for any x € W the following holds:

xEA iff r=uy;.
Proof. A detailed proof is presented in [2]. O
Theorem 4. The formulas {A4;}, i > 1 are non-equivalent in the logic Ta.

Proof. Obvious.

3 The existence of a continuum of logics over T

Yutaka Miyazaki in [4] proved the existence of a continuum of logics over KTB.
First, he showed the existence of a continuum of orthologics and then applied an
embedding from orthologics to KTB logics. In [5] Y. Miyazaki proved the existence
of a continuum of logics over Ts. In the proof he considered logics determined by
the so-called wheel frames.

Definition 5. Forn € w, n > 5, the wheel frame 20,, = (W, R) of degree n consists
of the following set and binary relation: W = rim(W) U h, where rim(W) =
{1,2,...,n} and h & rim(W). Any element in rim(W) is called a rim element,
whereas the element h - the hub element. The relation R is defined as: R :=
{(z,y) € (rim(W))? : |z —y| < Umod(n — 1))} U{(h,h)} U{(h,z),(z,h) : = €
rim(W)}.

For example in Figure 2 we present a diagram of the 2.



Figure 2.

Y .Miyazaki proved the following two lemmas (Proposition 19, Lemma 20 from [5]):
Lemma 6. Form >n >5, L(20,) € L(20,,).

Lemma 7. Form > n > 5, suppose there is a p-morphism from 20, to 20,,. Then
m is divisible by n.

On the base of these two lemmas and by using the splitting technique effectively, Y.
Miyazaki constructed a continuum of normal modal logics over KTB @& [1%p — [13p
logic.

Below, we present an improved method (in comparison to the one from [2]) for
obtaining a continuum of logics above T'5. Actually, we axiomatize the logics deter-
mined by wheel frames with formulas in one variable. Let us define new formulas
for k € w:

Definition 8.

Cr, = D2[Ak,1 — QAkL fOT‘ k> 2,
D, = Dz[(Ak A\ —|<>Ak+1) — <>€],
E = D*0p— 07
k—1
F, = (OpA /\ CiNDx_1 NE) — <>2Ak,
=2
where
g = —UpAohp,
v = BAQGALAQA,,
e = ﬁ AN _\<>A1 N _\<>A2.

Lemma 9. Let k > 5 and k be an odd number. Then 20; W~ Fy, iff i is divisible by
k4 2.



Proof. (<)
Let i« = k + 2. We define the following valuation in the frame 20;:

b,
b,
b,
b,

b,
p, for n >3 and 2n—1 <7,
p, for n >3 and 2n <.
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Then the point 1 is the only point such that 1 = Op. And further:

h = b
2 E o
3 E A,
4 = A,

k+1 |: Ak—la
k+2 W Ag, and k+2F¢

Then we see that for all j = 3,...,k+ 1 we have: j = A, iff n = j —2. We conclude
that for all j = 1,2,...,k + 1 it holds that: j E /\5;21 C; AN Dy_1 AN E. Then the
predecessor of the formula Fy: (Op A /\f:_z1 Ci ADy_1 N E) is true only at the point
1. At the point 1 we also have: 1 [~ (?Ay, because there is no point in the frame
satisfying Ai. Hence at the point 1, the formula F} is not true.

In the case when i = m(k + 2) for some m # 1, m € w we define the valuation
similarly:

h = p,
1+Uk+2) E p,
2+1(k+2) E bp,
3+1Uk+2) ¥ p,
4+1k+2) ¥~ p
n—14+1lk+2) E p, for n>3 and 2n—1+1(k+2) <1,
2n+U(k+2) ¥ p, for n>3 and 2n+1(k+2) < i.

for all [ such that: 0 <1 < m. The rest of the proof in this case proceeds analogously
to the case i = k + 2.
(=) Suppose there is a point € W such that:

k—1

v E (OpA N\ CiADy 1 AE)
1=2

x ): —\<>2Ak.

First, let us observe that © # h because if h = Op then for all € rim(W) we
have z |= p. Hence there is no point ' € rim(W) such that 2’ = . Then it is
impossible that at the point h formula (Cp A /\5;21 Ci; NDy_1 AN E) is true. Then z
has to belong to rim(W). Let = 1. Then we know that there is a point 2 such
that 2 |= v what involves existence of the next point 3 such that 3 = A;. Because
of C;, i = 1,2,....,k — 1 we know that there is a sequence of points 3,4, ...,k + 1



such that n | Ao for 2 <n < k+1and k+ 1 —-0QAg. Then a point k + 2,
which is next to the point k + 1, has to validate the formula €. Because h [~ ¢ and
k,k+1 [~ e then it must be a new rim element. It has to see some point validating
Op and if it sees the point 1 then we have that ¢ = k + 2. But suppose that k + 2
does not see the point 1. Anyway, it has to see another point validating Clp. Say,
it is the point k 4 3. But it has to be k + 3 = {. Because h [~ v then it has to
be other point, say k + 4 such that k¥ + 4 |= +. Then there has to be a next point
k + 5 different from h such that k +5 = A;. Again from C; for i = 1,2,...,k — 1
we have to have: k+ 6 | Ag,...,2k + 3 = Ax_1. Then we have that there has to
be a point 2k + 4 validating e, and then some point validating Cp. If it is the point
1 then we have i = 2(k + 2). If not, then we have analogously another sequence of
k + 2 points and so on.

O

The main theorem is the following:

Theorem 10. There is a continuum of normal modal logics over To defined by
formulas written in one variable.

Proof. Let Prim :={n € w:n+2is prime, n > 5}. Let X, Y C Primand X #Y.
(Exactly: X € Y and Y € X). Consider logics: Lx := T2 ® {F) : k € X} and
Ly =Ty ®{F,:keY}. Let j € Y\ X. Obviously: F; € Ly. From Lemma 9
we know that F; & Lx, because Wjio = Fj and Viex [i #j] = W, E F.
That means that we are able to define a continuum of different logics above Ty by

formulas of one variable.
O
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