On the existence of a continuum of logics in $NEXT(\mathbf{KTB} \oplus \Box^2 p \rightarrow \Box^3 p)$

Zofia Kostrzycka

August 2, 2007

Abstract

In this paper we consider formulas in one variable in the normal logic $\mathbf{T_2} = \mathbf{K} \mathbf{T} \mathbf{B} \oplus \Box^2 p \rightarrow \Box^3 p$. Next, we use the formulas to define a continuum of logics over T_2 .

1 Introduction

In this paper we investigate normal modal logics over $\mathbf{T_2} = \mathbf{K} \mathbf{T} \mathbf{B} \oplus \Box^2 p \rightarrow \Box^3 p$. The KTB logic is known as the Brouwer system and is an example of a non-transitive logic. It is characterized by the class of reflexive symmetric and non-transitive frames. There is very few results concerning this logic; some of them are included in $|1| - |5|$.

Let us notice that adding the axiom $\Box^2 p \to \Box^3 p$ to the Brouwer logic involves the following first order condition on frames:

$$
(tran_2)
$$
 $\forall_{x,y}$ (if xR^3y then xR^2y).

The above property is known as a two-step transitivity.

2 Formulas in one variable in $NEXT(\mathbf{T_2})$

In this section we remind ourselves the infinite sequence of non-equivalent formulas in one variable defined in [2]. Denote $\alpha := p \wedge \neg \Diamond \Box p$.

Definition 1.

$$
A_1 := \neg p \land \Box \neg \alpha,
$$

\n
$$
A_2 := \neg p \land \neg A_1 \land \Diamond A_1,
$$

\n
$$
A_3 := \alpha \land \Diamond A_2,
$$

For $n \geq 2$:

$$
A_{2n} := \neg p \land \Diamond A_{2n-1} \land \neg A_{2n-2},
$$

$$
A_{2n+1} := \alpha \land \Diamond A_{2n} \land \neg A_{2n-1}.
$$

Let us define the following model (see Figure 1):

Definition 2. $\mathfrak{M} = \langle W, R, V \rangle$, where

$$
W := \{x_1, x_2\} \cup \{y_i, i \ge 1\}.
$$

The relation R is reflexive, symmetric, 2-step accessible and:

$$
x_1Rx_2, \quad x_2Ry_i \text{ for any } i \ge 1,
$$

$$
y_iRy_j \text{ if } |i-j| \le 1 \text{ for any } i, j \ge 1.
$$

The valuation is the following:

$$
V(p) := \{x_1, x_2\} \cup \{y_{2m+1}, m \ge 1\}.
$$

Figure 1.

Lemma 3. For any $i \geq 1$ and for any $x \in W$ the following holds:

$$
x \models A_i \quad \text{iff} \quad x = y_i.
$$

Proof. A detailed proof is presented in [2]. \Box

Theorem 4. The formulas $\{A_i\}$, $i \geq 1$ are non-equivalent in the logic $\mathbf{T_2}$.

Proof. Obvious.

 \Box

3 The existence of a continuum of logics over T_2

Yutaka Miyazaki in [4] proved the existence of a continuum of logics over KTB. First, he showed the existence of a continuum of orthologics and then applied an embedding from orthologics to KTB logics. In [5] Y. Miyazaki proved the existence of a continuum of logics over T_2 . In the proof he considered logics determined by the so-called wheel frames.

Definition 5. For $n \in \omega$, $n \geq 5$, the wheel frame $\mathfrak{W}_n = \langle W, R \rangle$ of degree n consists of the following set and binary relation: $W = rim(W) \cup h$, where $rim(W) :=$ ${1, 2, ..., n}$ and $h \notin rim(W)$. Any element in rim(W) is called a rim element, whereas the element h - the hub element. The relation R is defined as: $R :=$ $\{(x,y)\in (rim(W))^2: |x-y|\leq 1(mod(n-1))\}\cup \{(h,h)\}\cup \{(h,x),(x,h): x\in$ $rim(W)$.

For example in Figure 2 we present a diagram of the \mathfrak{W}_8 .

Figure 2.

Y.Miyazaki proved the following two lemmas (Proposition 19, Lemma 20 from [5]):

Lemma 6. For $m > n \geq 5$, $L(\mathfrak{W}_n) \nsubseteq L(\mathfrak{W}_m)$.

Lemma 7. For $m \ge n \ge 5$, suppose there is a p-morphism from \mathfrak{W}_m to \mathfrak{W}_n . Then m is divisible by n.

On the base of these two lemmas and by using the splitting technique effectively, Y. Miyazaki constructed a continuum of normal modal logics over $\mathbf{KTB} \oplus \Box^2 p \to \Box^3 p$ logic.

Below, we present an improved method (in comparison to the one from [2]) for obtaining a continuum of logics above T_2 . Actually, we axiomatize the logics determined by wheel frames with formulas in one variable. Let us define new formulas for $k \in \omega$:

Definition 8.

$$
C_k := \Box^2[A_{k-1} \to \Diamond A_k], \text{ for } k > 2,
$$

\n
$$
D_k := \Box^2[(A_k \land \neg \Diamond A_{k+1}) \to \Diamond \varepsilon],
$$

\n
$$
E := \Box^2(\Box p \to \Diamond \gamma),
$$

\n
$$
F_k := (\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E) \to \Diamond^2 A_k,
$$

\nhere

 w_k

$$
\beta := \neg \Box p \land \Diamond \Box p,
$$

\n
$$
\gamma := \beta \land \Diamond A_1 \land \neg \Diamond A_2,
$$

\n
$$
\varepsilon := \beta \land \neg \Diamond A_1 \land \neg \Diamond A_2.
$$

 λ \wedge \vdash

Lemma 9. Let $k \geq 5$ and k be an odd number. Then $\mathfrak{W}_i \not\models F_k$ iff i is divisible by $k+2$.

Proof. (\Leftarrow) Let $i = k + 2$. We define the following valuation in the frame \mathfrak{W}_i :

$$
h \models p,
$$

\n
$$
1 \models p,
$$

\n
$$
2 \models p,
$$

\n
$$
3 \not \models p,
$$

\n
$$
4 \not \models p,
$$

\n
$$
2n-1 \models p, \text{ for } n \ge 3 \text{ and } 2n-1 \le i,
$$

\n
$$
2n \not \models p, \text{ for } n \ge 3 \text{ and } 2n < i.
$$

Then the point 1 is the only point such that $1 \models \Box p$. And further:

$$
h \models p,
$$

\n
$$
2 \models \gamma,
$$

\n
$$
3 \models A_1,
$$

\n
$$
4 \models A_2,
$$

\n
$$
k+1 \models A_{k-1},
$$

\n
$$
k+2 \not\models A_k, \text{ and } k+2 \models \varepsilon
$$

Then we see that for all $j = 3, ..., k + 1$ we have: $j \models A_n$ iff $n = j - 2$. We conclude that for all $j = 1, 2, ..., k + 1$ it holds that: $j \models \bigwedge_{i=2}^{k-1} C_i \wedge D_{k-1} \wedge E$. Then the predecessor of the formula F_k : $(\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E)$ is true only at the point 1. At the point 1 we also have: $1 \not\models \Diamond^2 A_k$, because there is no point in the frame satisfying A_k . Hence at the point 1, the formula F_k is not true.

In the case when $i = m(k + 2)$ for some $m \neq 1$, $m \in \omega$ we define the valuation similarly:

$$
h \models p,
$$

\n
$$
1 + l(k+2) \models p,
$$

\n
$$
2 + l(k+2) \models p,
$$

\n
$$
3 + l(k+2) \not\models p,
$$

\n
$$
4 + l(k+2) \not\models p,
$$

\n
$$
2n - 1 + l(k+2) \not\models p,
$$
 for $n \ge 3$ and $2n - 1 + l(k+2) \le i$,
\n
$$
2n + l(k+2) \not\models p,
$$
 for $n \ge 3$ and $2n + l(k+2) < i$.

for all l such that: $0 \leq l \leq m$. The rest of the proof in this case proceeds analogously to the case $i = k + 2$.

 (\Rightarrow) Suppose there is a point $x \in W$ such that:

$$
x \models (\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E)
$$

$$
x \models \neg \Diamond^2 A_k.
$$

First, let us observe that $x \neq h$ because if $h \models \Box p$ then for all $x \in rim(W)$ we have $x \models p$. Hence there is no point $x' \in rim(W)$ such that $x' \models \gamma$. Then it is impossible that at the point h formula $(\Box p \land \bigwedge_{i=2}^{k-1} C_i \land D_{k-1} \land E)$ is true. Then x has to belong to $rim(W)$. Let $x = 1$. Then we know that there is a point 2 such that $2 \models \gamma$ what involves existence of the next point 3 such that $3 \models A_1$. Because of C_i , $i = 1, 2, ..., k - 1$ we know that there is a sequence of points $3, 4, ..., k + 1$ such that $n \models A_{n-2}$ for $2 \leq n \leq k+1$ and $k+1 \models \neg \Diamond A_k$. Then a point $k+2$, which is next to the point $k + 1$, has to validate the formula ε . Because $h \not\models \varepsilon$ and $k, k+1 \not\models \varepsilon$ then it must be a new rim element. It has to see some point validating $\Box p$ and if it sees the point 1 then we have that $i = k + 2$. But suppose that $k + 2$ does not see the point 1. Anyway, it has to see another point validating $\Box p$. Say, it is the point $k + 3$. But it has to be $k + 3 \models \Diamond \gamma$. Because $h \not\models \gamma$ then it has to be other point, say $k + 4$ such that $k + 4 \models \gamma$. Then there has to be a next point $k+5$ different from h such that $k+5 \models A_1$. Again from C_i for $i = 1, 2, ..., k-1$ we have to have: $k + 6 \models A_2, ..., 2k + 3 \models A_{k-1}$. Then we have that there has to be a point $2k + 4$ validating ε , and then some point validating $\Box p$. If it is the point 1 then we have $i = 2(k + 2)$. If not, then we have analogously another sequence of $k + 2$ points and so on.

The main theorem is the following:

Theorem 10. There is a continuum of normal modal logics over T_2 defined by formulas written in one variable.

Proof. Let $Prim := \{n \in \omega : n+2 \text{ is prime}, n \geq 5\}$. Let $X, Y \subset Prim$ and $X \neq Y$. (Exactly: $X \not\subseteq Y$ and $Y \not\subseteq X$). Consider logics: $L_X := \mathbf{T_2} \oplus \{F_k : k \in X\}$ and $L_Y := \mathbf{T_2} \oplus \{F_k : k \in Y\}$. Let $j \in Y \setminus X$. Obviously: $F_j \in L_Y$. From Lemma 9 we know that $F_j \notin L_X$, because $W_{j+2} \not\models F_j$ and $\forall_{i \in X}$ $[i \neq j \Rightarrow W_{j+2} \models F_i]$. That means that we are able to define a continuum of different logics above T_2 by formulas of one variable.

 \Box

 \Box

References

- [1] Byrd M., On the addition of weakened L-reductionaxioms to the Brouwer system, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 24, 1978, 405-408.
- [2] Kostrzycka Z., On formulas in one variable in $NEXT(KTB)$, Bulletin of the Section of Logic, Vol.35:2/3, (2006), 119-131.
- [3] Makinson D., Non-equivalent formulae in one variable in a strong omnitemporal modal logic, Zeitchr. f. math. Logik und Grundlagen d. Math., Vol.27, (1981), 111-112.
- [4] Miyazaki Y. Binary Logics, Orthologics and their Ralations to Normal Modal Logics, Advances in Modal Logic, Vol.4, (2003), 313-333.
- [5] Miyazaki Y. Normal modal logics containing KTB with some finiteness conditions, Advances in Modal Logic, Vol.5, (2005), 171-190.