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Abstract

We examine normal extensions of Grzegorczyk’s modal logic over the lan-
guage {→, ¤} with one propositional variable. Corresponding Kripke frames,
including the so-called universal frames, are investigated in the paper. By use
of them we characterize the Tarski-Lindenbaum algebras of the logics consid-
ered.

1 Grzegorczyk’s logic
Syntactically, Grzegorczyk’s modal logic Grz is obtained by adding to the axioms
of classical logic the following modal formulas

(re) ¤p → p

(2) ¤(p → q) → (¤p → ¤q)
(tra) ¤p → ¤¤p

(grz) ¤(¤(p → ¤p) → p) → p

The logic Grz is defined as the set of all consequences of the new axioms by modus
ponens, substitution and necessitation (RG) rules. The last one can be presented
by following scheme:

(RG)
` α

` ¤α
.

Semantically, Grz logic is characterized by the class of reflexive transitive and
antisimmetric Kripke frames which do not contain any infinite ascending chains of
distinct points.
Recall, that by a frame we mean a pair F =< W,R > consisting of a nonempty set
W and a binary relation R on W . The elements of W are called points and xRy is
read as ‘y is accessible from x’. By x ↑ we mean the set of successors of x and by
x ↓ -the set of its predecessors.
A model M is a triple < W,R, V >, where V is a valuation in F associating with
each variable p a set of V (p) of points in W . V (p) is construed as the set of points
at which p is true. By induction on construction of α we define a truth relation ‘|=’
in F. Let ML be a fixed modal language.
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Definition 1.

(F, x) |= p iff x ∈ V (p), for every p ∈ V arML (1)
(F, x) |= α → β iff (F, x) |= α implies (F, x) |= β, (2)

(F, x) 6|=⊥, (3)
(F, x) |= ¤α iff (F, y) |= α for all y ∈ W such that xRy. (4)

If M is known we write x |= ϕ instead of (M, x) |= ϕ.
ϕ is valid in a frame F if ϕ is true in all models based on F.
In this paper we will consider formulas built up from one propositional variable p
by means of implication and necessity operator only.

p ∈ F{→,¤}

α → β ∈ F{→,¤} iff α ∈ F{→,¤} and β ∈ F{→,¤}

¤α ∈ F{→,¤} iff α ∈ F{→,¤}.

2 Implication algebras
In this chapter we recall some algebraic notions and facts concerning implication,
Boolean and modal algebras (for details see [1]).

Definition 2. An abstract algebra A = (A,1,⇒) is said to be an implication
algebra provided for all a, b, c ∈ A the following conditions are satisfied:

a ⇒ (b ⇒ a) = 1, (5)
(a ⇒ (b ⇒ c)) ⇒ ((a ⇒ b) ⇒ (a ⇒ c)) = 1, (6)
if a ⇒ b = 1 and b ⇒ a = 1, then a = b, (7)

a ⇒ 1 = 1, (8)
(a ⇒ b) ⇒ a = a. (9)

We shall define a new two-argument operation in any implication algebra (A,1,⇒)
as follows:

a ∪ b = (a ⇒ b) ⇒ b for all a, b ∈ A. (10)

We also define an order ≤ on (A,1,⇒) in the usual way:

a ≤ b iff a ⇒ β = 1. (11)

Lemma 3. In any implication algebra (A,1,⇒) and for all a, b ∈ A

a ∪ b = l.u.b{a, b}, (12)

where ∪ is defined by (10) and l.u.b.{a, b} denotes the least upper bound of {a, b} in
an ordered set (A,≤).

Now, we shall define g.l.b.{a, b} - the greatest lower bound of {a, b}. Suppose, there
is a zero element 0 in an algebra (A,1,⇒). So, we can introduce a new one-argument
operation of complementation − and a two-argument operation of intersection as
follows:

−a = a ⇒ 0 for all a ∈ A, (13)
a ∩ b = −(−a ∪ −b) for all a, b ∈ A, (14)
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It is obvious that g.l.b.{a, b} = a ∩ b.
We define the following equations:

a ⇒ −b = b ⇒ −a, (15)
−(a ⇒ a) ⇒ b = 1. (16)

The connection between implication algebras and Boolean algebras is established
by the following lemma (see [1]):

Lemma 4. If (A,0,1,⇒,−) is an abstract algebra such that (A,1,⇒) is an impli-
cation algebra with zero element and the equations (15), (16) hold, then (A,0,1,⇒
,∪,∩,−), where the operations ∪,∩ are defined by (10), (14), is a Boolean algebra.

Definition 5. By a modal algebra we mean an algebra A = (A,0,1,⇒,∪,∩,−, l),
where (A,0,1,⇒,∪,∩,−) is a Boolean algebra and l is a unary operation satisfying
the conditions:

l1 = 1, (17)
l(a ∩ b) = la ∩ lb. (18)

3 Normal extensions of Grz

This section will be concerned with normal extensions of Grz determined by ap-
propriate Kripke frames with finite depth.

Definition 6. A frame F is of depth n < ω if there is a chain of n points in F and
no chain of more than n points exists in F.

For n > 0, let Jn be an axiom that says any strictly ascending partial-ordered
sequence of points is of length n at most, i.e.,that there exist no points x1, x2, ..., xn

such that xn+1 is accessible from xi for i = 1, 2, ..., n. The formulas Jn are well
known (see for example [2] p.42) and are defined inductively as follows1

Definition 7.

J1 = ♦¤p1 → p1,

Jn+1 = ♦(¤pn+1∧ ∼ Jn) → pn+1.

We will consider the logics Grz≤n = Grz ⊕ Jn. They contain the logic Grz and
the following inclusions hold:

Grz ⊂ ... ⊂ Grz≤n ⊂ Grz≤n−1 ⊂ ... ⊂ Grz≤2 ⊂ Grz≤1. (19)

To characterize the logics Grz≤n, we describe the appropriate Tarski-Lindenbaum
algebras Grz≤n/≡.

Definition 8. α ≡ β iff α → β ∈ Grz≤n and β → α ∈ Grz≤n for n = 1, 2, ..., n.
1The formulas Jn are defined in the full language. In the language F{→,¤} we can find the

analogous formulas. We will see in Section 5 the formula A2n+1 plays the role of formula Jn (see
Lemma 29).
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This equivalence relation depends on n. In fact we have n different equivalence
relations; one for each logic Grz≤n.

Definition 9. Grz≤n/≡ = {[α]≡, α ∈ F{→,¤}}

Definition 10. The order of classes [α]≡ is defined as
[α]≡ ≤ [β]≡ iff α → β ∈ Grz≤n for n = 1, 2, ..., n.

Lemma 11. For any algebra Grz≤n/≡ the following orders hold:

[¤p]≡ ≤ [α]≡ for any α ∈ F{→,¤}, (20)
[α]≡ ≤ [p → p]≡ for any α ∈ F{→,¤}, (21)

where ≤ is defined in Definition 10.

Proof. Obvious.
We see that the class [¤p]≡ behaves as 0 of the lattice Grz≤n/≡, while [p → p]≡
as 1.

Lemma 12. Every algebra (Grz≤n/≡,1,→) is an implication algebra including
0 = [¤p]≡.

Proof. Since the implication → is just classical one, the conditions (5,6,7,8,9) are
fulfilled. ¤
After introducing the new operations ∨,∼,∧ defined analogously to (10,13,14) we
have:

Lemma 13. Every algebra (Grz≤n/≡,1,→,∨,∧,∼) is a Boolean algebra.

Proof. It follows from Lemma 12 and 4. ¤

Lemma 14. Every algebra (Grz≤n/≡,1,→,∨,∧,∼,¤) is a modal algebra.

Proof. It follows from Lemma 13 and from the fact the ¤ fulfills the conditions (17)
and (18). ¤

4 Universal models
In this section we review some of the standard facts on canonical, filtrated and
universal models (for details see [2]). First, let us to recall the notion of canonical
frame. Roughly speaking it is a frame built over a language. Points xi in canonical
frame are maximal consistent sets of formulas (for details see [2]). Hence xi =
(Γi, ∆i) and φ ∈ Γi iff xi |= φ and ϕ ∈ ∆i iff xi 6|= ϕ.

Definition 15. Let FL =< WL, RL > be a frame such that WL is the set of all
maximal L-consistent tableaux and for any x1 = (Γ1,∆1) and x2 = (Γ2, ∆2) in WL:
x1RLx2 iff {φ : ¤φ ∈ Γ1} ⊆ Γ2.

Define the valuation VL in FL for the variable p as follows:

VL(p) = {(Γ, ∆) ∈ WL : p ∈ Γ}.
The resulting model ML =< FL, VL > is called the canonical model for L.

Grzegorczyk’s logic is not canonical. Canonical frame FGrz is reflexive and tran-
sitive, but can contain proper clusters. To avoid it the selective filtration is used.

Let
∑

be a set of formulas closed under their subformulas.
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Definition 16.

x ∼Σ y iff ((M, x) |= φ iff (M, y) |= φ), for every φ ∈ Σ

Definition 17. A filtration of M =< W,R, V > through Σ is a model N =<
Z, S, U > such that: (i) Z = {[x] : x ∈ W},
(ii) U(p) = {[x] : x ∈ V (p)} for every p ∈ Σ,
(iii) xRy implies [x]S[y] for all x, y ∈ W ,
(iv) if [x]S[y] then y |= φ whenever x |= ¤φ for x, y ∈ W and ¤φ ∈ Σ

Let MGrz be the canonical and filtrated model for Grz. The following lemma is
proved in [2]:

Lemma 18. Suppose ¤φ ∈ ∑
, x |= φ and x 6|= ¤φ for some point x in MGrz.

Then there is a point y ∈ x ↑ such that y 6|= φ and z ∼Σ x for no z ∈ y ↑.

From the above lemma it follows that the filtrated canonical model for Grz is a
finite partial order without proper clusters.

Definition 19. A modal general frame is a triple F =< W,R,P > in which <
W,R > is an ordinary Kripke frame and P , a set possible values in F, is a subset
of 2W containing ∅ and closed under ∩,∪ and operations ⊃, ¤ as follow:

X ⊃ Y = (W −X) ∪ Y,

¤X = {x ∈ W : ∀y ∈ W (xRy ⇒ y ∈ X)}

The algebra < P,∩,∪,→, ∅,¤ > is a modal algebra and is called the dual algebra
of F and denoted by F+. A valuation V is defined in the same way as for Kripke
models and V (φ) = {x ∈ W : x |= φ}.

Definition 20. The general frame associated with the canonical model ML is called
universal frame and denoted by γFL =< WL, RL, PL >.

The connection between Tarski - Lindenbaum’s algebras and dual algebras is showed
in the following theorem:

Theorem 21. For every normal modal logic L the Tarski-Lindenbaum algebra L/≡
is isomorphic to the dual γF+

L of the universal frame γFL. The isomorphism is a
map f defined by f([φ]≡) = VL(φ).

5 Building the universal frame for Grz≤n

Now, we can approach the main problem. We will build the universal frame γF≤n
Grz

generated by one variable and show that for any n ∈ N the algebra Grz≤n/≡ is
finite. The length of formula is defined in a normal way:
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Definition 22.

l(p) = 1
l(¤φ) = 1 + l(φ)

l(φ → ψ) = l(φ) + l(ψ) + 1

Definition 23. A point x in a frame F is of depth d iff the subframe generated by
x is of depth d.

Lemma 24. Let γF1 =< W≤n
Grz∪{x′n}, R≤n

Grz, P
≤n
Grz > and γF2 =< W≤n

Grz, R
≤n
Grz, P

≤n
Grz >

be two universal frames for Grz≤n,where x′n is the point of depth 1 such that x′n |= p.
Suppose the valuations of p do not differ in γF1 and γF2 at the same points.
For any α ∈ F{→,¤}, for any xi ∈ W≤n

Grz the following equivalence holds:

(γF1, xi) |= α iff (γF2, xi) |= α. (22)

Proof. Let (x1, x2, ..., xn) be any chain of points in W≤n
Grz. The proof is by induction

on the depth i for i = 1, ..., n of points xn−i+1. For i = 1 it is obvious the point x′n
is not accessible to any other point of depth 1 and then (22) holds trivially.
Suppose (22) holds at points of depth i. Now we use induction on the length of
α. If α = p then (22) is obvious. Suppose (22) is true for α such that l(α) ≤ k at
the point xn−i−1. We show (22) holds for α of length k + 1 at the same point. We
consider two cases:

1. Let α = α1 → α2 and (γF1, xn−i−1) 6|= α. Then (γF1, xn−i−1) |= α1 and
(γF1, xn−i−1) 6|= α2. From inductive hypothesis we have (γF2, xn−i−1) |= α1

and (γF2, xn−i−1) 6|= α2 and hence (γF2, xn−i−1) 6|= α. The proof of reverse
implication is analogous.

2. Let α = ¤α1 and (γF1, xn−i−1) 6|= ¤α1.

(a) Suppose it is because (γF1, xn−i−1) 6|= α1. From inductive hypothesis we
have (γF2, xn−i−1) 6|= α1. Then (γF2, xn−i−1) 6|= ¤α1.

(b) Suppose we have (γF1, xn−i−1) |= α1 and for some l ≤ i holds (γF1, xn−l) 6|=
α1. The point xn−l must differ from x′n because at x′n every formula
α ∈ F{→,¤} is true (it is the last point in the frame γF1). From induc-
tive hypothesis we have (γF2, xn−l) 6|= α1. Then (γF2, xn−i−1) 6|= ¤α1.

If (γF1, xn−i−1) |= ¤α1 the proof is obvious.

¤
From Lemma 11 we deduce that if the last point validates p (and ¤p), then it vali-
dates all formulas from F{→,¤}. On the base of Lemma 24 we need only consider
universal frames with the last points not validating p. It coincides with consis-
tency of universal frames (see (3) in Definition 1). Consistency, in general involves
Grz≤n 6= F{→,¤}.

Corollary 25. The universal frame γF≤1
Grz consists of one point x such that x 6|= p.

Proof. Every two points x and x′ not validating p are equivalent to each other and
after using the selective filtration we obtain one-element frame. ¤

Lemma 26. The universal frame γF≤2
Grz consists of two points x1 and x2 such that

x1Rx2, x2 6|= p and x1 |= p.
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Proof. Because of Corollary 25 it is enough to show that does not exist a point
x′1 such that x′1Rx2 and x′1 6|= p. We show that if such a point exists it will be
equivalent to the point x2. We prove by induction on the length of α that for all k
and α ∈ F{→,¤}

x′1 |= α iff x2 |= α (23)

For k = 1 it is obvious that (23) is fulfilled. Assume (23) holds for k; we will prove
it for k + 1.

1. Let α = α1 → α2 and x2 6|= α. That means x2 |= α1 and x2 6|= α2. From
assumption we have x′1 |= α1 and x′1 6|= α2 which gives us x′1 6|= α.

2. Let α = ¤α1 and x′1 |= ¤α1. x′1Rx2 and hence x2 |= ¤α1. Suppose x′1 6|= ¤α1.
If x′1 6|= α1, from inductive assumption we have x2 6|= α1 and so x2 6|= ¤α1.
If x′1 |= α1 but x2 6|= α1 then we have a contradiction with the inductive
assumption.

After using the selective filtration with respect to the set F{→,¤} we identify the
points x′1 and x2. ¤
Below in Diagram 1 we present both the frame γF≤2

Grz and the Tarski-Lindenbaum
algebra Grz≤2 being isomorphic to the dual algebra F≤2+

Grz .
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Lemma 27. The universal frame γF≤3
Grz consists of three-element chain (x1, x2, x3)

such that x2 6|= p, x1 |= p and x3 |= p.

Proof. Analogous to the proof of Lemma 26. ¤
The diagrams of γF≤3

Grz and the Tarski-Lindenbaum algebra Grz≤3 are the following:
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Diagram 2.

where

A1 = [p]≡
A2 = ¤A1

A3 = A1 → A2

A4 = ¤A3

A5 = A3 → A4

B1 = A4 → A2

B2 = A5 → A2

The same reasoning can be applied in the case of building the universal frame with
depth n.

Lemma 28. The universal frame F≤n
Grz is an n -element chain (x1, x2, ..., xn) such

that for any k < n/2:

xn−2k 6|= p for k ≥ 0, (24)
xn−(2k−1) |= p for k ≥ 1. (25)

Definition 29.

A1 = p, A2n = ¤A2n−1, A2n+1 = A2n−1 → A2n, for n ≥ 1.

Lemma 30. Let γF≤n
Grz be the universal frame for Grz≤n. For any k = 0, ..., n−1:

xn−k ↑ |= Ak′ for any k′ ≥ 2k + 3. (26)

Proof. By induction on k. If k = 0 then the point xn is the last point in the chain
(x1, ..., xn). From Lemma 28, xn 6|= p and hence xn 6|= ¤p. This gives us xn |= A3.
It is easy to notice that xn |= Ak′ for k′ ≥ 3.
Assuming (26) to hold for points of depth ≤ k, we have xn−k ↑|= Ak′ for k′ ≥
2k + 3 and also xn−k ↑|= A2k+3. We will prove xn−k−1 |= A2k+5. If not, then
xn−k−1 |= A2k+3 and xn−k−1 6|= ¤A2k+3. Hence there is a point x′ ∈ xn−k−1 ↑
such that x′ 6|= A2k+3, but it is a contradiction. From inductive hypothesis we have
also xn−k−1 ↑|= Ak′ for k′ ≥ 2k + 5. ¤

Lemma 31. Let γF≤n
Grz be the universal frame for Grz≤n. Then

xn−2k |= A4k′+3 and xn−2k 6|= A4k′+1 (27)
for any 0 ≤ k′ ≤ k and 1 ≤ n− 2k ≤ n,

xn−(2k−1) |= A4k′+1 and xn−(2k−1) 6|= A4k′+3 (28)
for any 0 ≤ k′ ≤ k and 1 ≤ n− (2k − 1) ≤ n,

Proof. We use double induction with respect to the k and k′. Let k = 0. Then
k′ = 0 and xn 6|= p and xn |= A3. We obtained (27). If k = 1 then xn−1 |= p,
xn−1 6|= ¤p and hence xn−1 6|= A3. We obtained (28). Assume (27) and (28) hold
for some k. We show they hold for k + 1. Assume now they hold for some k′ ≤ k
and take k′+1 such that k′+1 ≤ k. Let us consider the formula A4k′+7 = A4k′+5 →
¤A4k′+5. We will prove xn−(2k+2) 6|= A4k′+5. We know that xn−(2k+2) |= A4k′+3

and xn−(2k+2) 6|= ¤A4k′+3 because xn−(2k−1) 6|= A4k′+3. So, xn−(2k+2) |= A4k′+7

and also xn−(2k+2) 6|= A4k′+5. The proof of (28) proceeds similarly. ¤
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Corollary 32. Let γF≤n
Grz be the universal frame for Grz≤n. For any

k = 0, 1, ..., n− 1:

max{k′ : xn−k 6|= A2k′+1} = k. (29)

Corollary 33. Let γF≤n
Grz be the universal frame for Grz≤n. For any

k = 0, 1, ..., n− 1:

xn−k 6|= A2k′+5 → A2k′+1 iff k′ = k. (30)

Because considered frames are 1- generated they are also atomic (see [2], p.270) that
are frames in which every point is an atom. The class [φ] is an atom in a universal
frame if there is only one point x = (Γ, ∆) such that φ ∈ Γ. In others words the
formula φ is possible only at one point.

Theorem 34. The following classes are atoms in every universal frame γF≤n
Grz:

(A2k+5 → A2k+1) → A2 for k = 0, 1, ..., n− 1.

Proof. In the universal frame γF≤n
Grz for any k ≤ n we have: xk 6|= A2. So,

from Corollary 33 we have the point xn−k is the only point at which the formula
(A2k+5 → A2n+1) → A2 is true. ¤
Corollary 35. Every algebra Grz≤n/≡ consists of 2n equivalence classes generated
by n atoms.

In the picture below the universal frame γF≤n
Grz with listed atoms is presented.

6

b

b

p

6

b
6

b

p
p
p
b

p

xn−3 [(A11 → A7) → A2]

xn−1 [(A7 → A3) → A2]

xn−2 [(A9 → A5) → A2]

xn [(A5 → A1) → A2]

x1 [(A2n+3 → A2n−1) → A2]

Diagram 3.

Diagram 4 presents the rule of raising of the quotient algebra Grz≤n/≡. More
exactly - the whole algebra Grz≤4/≡ is drawn with the one cube being a part of
Grz≤5/≡. The diagram of Grz≤5/≡ consists of four analogous cubes not being
marked in the picture. The classes of atoms are however listed.
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(A7 → A3) → A2

(A11 → A7) → A2

(A9 → A5) → A2(A13 → A9) → A2

Diagram 4.

Let

(sc) ¤(¤p → q) ∨¤(¤q → p).

It is well known linear Grzegorczyk’s logic Grz.3 = Grz ⊕ sc is characterized by
the linear frame < ω,≤>.

Observation 36. The {→,¤} fragment of Grzegorczyk’s logic over one variable is
the same as the appropriate fragment of linear Grzegorczyk’s logic.
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