Normal extensions of some fragment of Grzegorczyk's modal logic

Zofia Kostrzycka

Politechnika Opolska Luboszycka 3, 45-036 Opole, Poland E-mail zkostrz@po.opole.pl

March 21, 2005

Abstract

We examine normal extensions of Grzegorczyk's modal logic over the language $\{\rightarrow, \square\}$ with one propositional variable. Corresponding Kripke frames, including the so-called universal frames, are investigated in the paper. By use of them we characterize the Tarski-Lindenbaum algebras of the logics considered.

1 Grzegorczyk's logic

Syntactically, Grzegorczyk's modal logic Grz is obtained by adding to the axioms of classical logic the following modal formulas

$$
(re) \quad \Box p \to p
$$

\n
$$
(2) \quad \Box(p \to q) \to (\Box p \to \Box q)
$$

\n
$$
(tra) \quad \Box p \to \Box \Box p
$$

\n
$$
(grz) \quad \Box(\Box(p \to \Box p) \to p) \to p
$$

The logic Grz is defined as the set of all consequences of the new axioms by modus ponens, substitution and necessitation (R_G) rules. The last one can be presented by following scheme:

$$
(R_G)\ \ \frac{\vdash \alpha}{\vdash \Box \alpha}.
$$

Semantically, Grz logic is characterized by the class of reflexive transitive and antisimmetric Kripke frames which do not contain any infinite ascending chains of distinct points.

Recall, that by a frame we mean a pair $\mathfrak{F} = \langle W, R \rangle$ consisting of a nonempty set W and a binary relation R on W. The elements of W are called points and xRy is read as 'y is accessible from x'. By $x \uparrow$ we mean the set of successors of x and by $x \downarrow$ -the set of its predecessors.

A model \mathfrak{M} is a triple $\lt W, R, V >$, where V is a valuation in \mathfrak{F} associating with each variable p a set of $V(p)$ of points in W. $V(p)$ is construed as the set of points at which p is true. By induction on construction of α we define a truth relation ' \models' in \mathfrak{F} . Let \mathcal{ML} be a fixed modal language.

Definition 1.

$$
(\mathfrak{F}, x) \models p \quad \text{iff} \quad x \in V(p), \text{ for every } p \in Var\mathcal{ML} \tag{1}
$$

$$
(\mathfrak{F}, x) \models \alpha \to \beta \quad \text{iff} \quad (\mathfrak{F}, x) \models \alpha \text{ implies } (\mathfrak{F}, x) \models \beta,
$$
 (2)

$$
(\mathfrak{F},x)\not\models\perp,\tag{3}
$$

$$
(\mathfrak{F}, x) \models \Box \alpha \quad \text{iff} \quad (\mathfrak{F}, y) \models \alpha \text{ for all } y \in W \text{ such that } xRy. \tag{4}
$$

If M is known we write $x \models \varphi$ instead of $(\mathfrak{M}, x) \models \varphi$.

 φ is valid in a frame \mathfrak{F} if φ is true in all models based on \mathfrak{F} .

In this paper we will consider formulas built up from one propositional variable p by means of implication and necessity operator only.

$$
p \in \mathcal{F}^{\{\rightarrow,\square\}} \quad \text{if} \quad \alpha \in \mathcal{F}^{\{\rightarrow,\square\}} \quad \text{and} \quad \beta \in
$$

2 Implication algebras

In this chapter we recall some algebraic notions and facts concerning implication, Boolean and modal algebras (for details see [1]).

Definition 2. An abstract algebra $A = (A, 1, \Rightarrow)$ is said to be an implication algebra provided for all $a, b, c \in A$ the following conditions are satisfied:

$$
a \Rightarrow (b \Rightarrow a) = 1,\tag{5}
$$

$$
(a \Rightarrow (b \Rightarrow c)) \Rightarrow ((a \Rightarrow b) \Rightarrow (a \Rightarrow c)) = 1,
$$
 (6)

$$
\text{if } a \Rightarrow b = 1 \text{ and } b \Rightarrow a = 1, \text{ then } a = b,
$$
 (7)

$$
a \Rightarrow 1 = 1,\tag{8}
$$

$$
(a \Rightarrow b) \Rightarrow a = a. \tag{9}
$$

We shall define a new two-argument operation in any implication algebra $(A, 1, \Rightarrow)$ as follows:

$$
a \cup b = (a \Rightarrow b) \Rightarrow b \quad \text{for all } a, b \in A. \tag{10}
$$

We also define an order \leq on $(A, 1, \Rightarrow)$ in the usual way:

$$
a \le b \quad \text{iff} \quad a \Rightarrow \beta = 1. \tag{11}
$$

Lemma 3. In any implication algebra $(A, 1, \Rightarrow)$ and for all $a, b \in A$

$$
a \cup b = l.u.b\{a, b\},\tag{12}
$$

where \cup is defined by (10) and l.u.b.{a,b} denotes the least upper bound of {a, b} in an ordered set (A, \leq) .

Now, we shall define $q.l.b.\{a, b\}$ - the greatest lower bound of $\{a, b\}$. Suppose, there is a zero element 0 in an algebra $(A, 1, \Rightarrow)$. So, we can introduce a new one-argument operation of complementation − and a two-argument operation of intersection as follows:

$$
-a = a \Rightarrow \mathbf{0} \quad \text{for all } a \in A,
$$
\n⁽¹³⁾

$$
a \cap b = -(-a \cup -b) \quad \text{for all } a, b \in A,
$$
\n
$$
(14)
$$

It is obvious that $g.l.b.\{a, b\} = a \cap b$. We define the following equations:

$$
a \Rightarrow -b = b \Rightarrow -a,\tag{15}
$$

$$
-(a \Rightarrow a) \Rightarrow b = 1. \tag{16}
$$

The connection between implication algebras and Boolean algebras is established by the following lemma (see [1]):

Lemma 4. If $(A, 0, 1, \Rightarrow, -)$ is an abstract algebra such that $(A, 1, \Rightarrow)$ is an implication algebra with zero element and the equations (15), (16) hold, then $(A, 0, 1, \Rightarrow$, ∪, ∩, −), where the operations ∪, ∩ are defined by (10), (14), is a Boolean algebra.

Definition 5. By a modal algebra we mean an algebra $\mathcal{A} = (A, \mathbf{0}, \mathbf{1}, \Rightarrow, \cup, \cap, -, l)$, where $(A, 0, 1, \Rightarrow, \cup, \cap, -)$ is a Boolean algebra and l is a unary operation satisfying the conditions:

$$
l1 = 1,\t(17)
$$

$$
l(a \cap b) = la \cap lb. \tag{18}
$$

3 Normal extensions of Grz

This section will be concerned with normal extensions of Grz determined by appropriate Kripke frames with finite depth.

Definition 6. A frame \mathfrak{F} is of depth $n < \omega$ if there is a chain of n points in \mathfrak{F} and no chain of more than n points exists in $\mathfrak{F}.$

For $n > 0$, let J_n be an axiom that says any strictly ascending partial-ordered sequence of points is of length n at most, i.e., that there exist no points $x_1, x_2, ..., x_n$ such that x_{n+1} is accessible from x_i for $i = 1, 2, ..., n$. The formulas J_n are well known (see for example $[2]$ p.42) and are defined inductively as follows¹

Definition 7.

$$
J_1 = \Diamond \Box p_1 \to p_1,
$$

$$
J_{n+1} = \Diamond (\Box p_{n+1} \land \sim J_n) \to p_{n+1}.
$$

We will consider the logics $\mathbf{Grz}^{\leq n} = \mathbf{Grz} \oplus J_n$. They contain the logic \mathbf{Grz} and the following inclusions hold:

$$
\mathbf{Grz} \subset \ldots \subset \mathbf{Grz}^{\leq n} \subset \mathbf{Grz}^{\leq n-1} \subset \ldots \subset \mathbf{Grz}^{\leq 2} \subset \mathbf{Grz}^{\leq 1}.\tag{19}
$$

To characterize the logics $\mathbf{Grz}^{\leq n}$, we describe the appropriate Tarski-Lindenbaum algebras $\mathbf{Grz}^{\leq n}/_{\equiv}$.

Definition 8. $\alpha \equiv \beta$ iff $\alpha \to \beta \in \mathbf{Grz}^{\leq n}$ and $\beta \to \alpha \in \mathbf{Grz}^{\leq n}$ for $n = 1, 2, ..., n$.

¹The formulas J_n are defined in the full language. In the language $\mathcal{F}\{\rightarrow, \Box\}$ we can find the analogous formulas. We will see in Section 5 the formula A_{2n+1} plays the role of formula J_n (see Lemma 29).

This equivalence relation depends on n . In fact we have n different equivalence relations; one for each logic $\mathbf{Grz}^{\leq n}$.

 $\textbf{Definition 9. } \textbf{Grz}^{\leq n}/_{\equiv} = \{[\alpha]_{\equiv}, \, \alpha \in \mathcal{F}^{\{\rightarrow, \square\}}\}$

Definition 10. The order of classes $[\alpha]_{\equiv}$ is defined as $[\alpha]_{\equiv} \leq [\beta]_{\equiv} \text{ iff } \alpha \to \beta \in \mathbf{Grz}^{\leq n} \text{ for } n = 1, 2, ..., n.$

Lemma 11. For any algebra $\mathbf{Grz}^{\leq n}/_{\equiv}$ the following orders hold:

$$
[\Box p]_{\equiv} \leq [\alpha]_{\equiv} \text{ for any } \alpha \in \mathcal{F}^{\{\rightarrow, \Box\}},\tag{20}
$$

$$
[\alpha]_{\equiv} \le [p \to p]_{\equiv} \text{ for any } \alpha \in \mathcal{F}^{\{\to, \square\}},\tag{21}
$$

where \leq is defined in Definition 10.

Proof. Obvious.

We see that the class $[\Box p]_{\equiv}$ behaves as **0** of the lattice $\mathbf{Grz}^{\leq n}/_{\equiv}$, while $[p \to p]_{\equiv}$ as 1.

Lemma 12. Every algebra $(\mathbf{Grz}^{\leq n}/_{\equiv},1,\rightarrow)$ is an implication algebra including $\mathbf{0} = [\Box p] =$.

Proof. Since the implication \rightarrow is just classical one, the conditions (5,6,7,8,9) are fulfilled. \square

After introducing the new operations \vee, \sim, \wedge defined analogously to (10,13,14) we have:

Lemma 13. Every algebra $(\mathbf{Grz}^{\leq n}/_{\equiv}, 1, \rightarrow, \vee, \wedge, \sim)$ is a Boolean algebra.

Proof. It follows from Lemma 12 and 4. \Box

Lemma 14. Every algebra $(\text{Grz}^{\leq n}/_{\equiv}, 1, \rightarrow, \vee, \wedge, \sim, \square)$ is a modal algebra.

Proof. It follows from Lemma 13 and from the fact the \Box fulfills the conditions (17) and (18). \Box

4 Universal models

In this section we review some of the standard facts on canonical, filtrated and universal models (for details see [2]). First, let us to recall the notion of canonical frame. Roughly speaking it is a frame built over a language. Points x_i in canonical frame are maximal consistent sets of formulas (for details see [2]). Hence $x_i =$ (Γ_i, Δ_i) and $\phi \in \Gamma_i$ iff $x_i \models \phi$ and $\varphi \in \Delta_i$ iff $x_i \not\models \varphi$.

Definition 15. Let $\mathfrak{F}_L = \langle W_L, R_L \rangle$ be a frame such that W_L is the set of all maximal L-consistent tableaux and for any $x_1 = (\Gamma_1, \Delta_1)$ and $x_2 = (\Gamma_2, \Delta_2)$ in W_L : $x_1R_Lx_2 \text{ iff } {\phi : \Box \phi \in \Gamma_1} \subseteq \Gamma_2.$

Define the valuation V_L in \mathfrak{F}_L for the variable p as follows:

$$
V_L(p) = \{ (\Gamma, \Delta) \in W_L : p \in \Gamma \}.
$$

The resulting model $\mathfrak{M}_L = \langle \mathfrak{F}_L, V_L \rangle$ is called the canonical model for L.

Grzegorczyk's logic is not canonical. Canonical frame \mathfrak{F}_{Grz} is reflexive and transitive, but can contain proper clusters. To avoid it the selective filtration is used.

Let Σ be a set of formulas closed under their subformulas.

Definition 16.

$$
x \sim_{\Sigma} y
$$
 iff $((\mathfrak{M}, x) \models \phi$ iff $(\mathfrak{M}, y) \models \phi)$, for every $\phi \in \Sigma$

Definition 17. A filtration of $\mathfrak{M} \leq W, R, V >$ through Σ is a model $\mathfrak{N} \leq$ $Z, S, U > \text{such that:} \ (i) \ Z = \{ [x] : x \in W \},\$ (ii) $U(p) = \{ [x] : x \in V(p) \}$ for every $p \in \Sigma$, (iii) xRy implies $[x]S[y]$ for all $x, y \in W$, (iv) if $[x]S[y]$ then $y \models \phi$ whenever $x \models \Box \phi$ for $x, y \in W$ and $\Box \phi \in \Sigma$

Let \mathfrak{M}_{Grz} be the canonical and filtrated model for **Grz**. The following lemma is proved in [2]:

Lemma 18. Suppose $\Box \phi \in \Sigma$, $x \models \phi$ and $x \not\models \Box \phi$ for some point x in \mathfrak{M}_{Grz} . Then there is a point $y \in x \uparrow$ such that $y \not\models \phi$ and $z \sim_{\Sigma} x$ for no $z \in y \uparrow$.

From the above lemma it follows that the filtrated canonical model for Grz is a finite partial order without proper clusters.

Definition 19. A modal general frame is a triple $\mathfrak{F} = \langle W, R, P \rangle$ in which \langle $W, R >$ is an ordinary Kripke frame and P, a set possible values in \mathfrak{F} , is a subset of 2^W containing \emptyset and closed under \cap , \cup and operations \supset , \Box as follow:

> $X \supset Y = (W - X) \cup Y$ $\Box X = \{x \in W : \forall y \in W(xRy \Rightarrow y \in X)\}\$

The algebra $\langle P,\cap,\cup,\to,\emptyset\rangle \supseteq S$ is a modal algebra and is called the dual algebra of $\mathfrak F$ and denoted by $\mathfrak F^+$. A valuation V is defined in the same way as for Kripke models and $V(\phi) = \{x \in W : x \models \phi\}.$

Definition 20. The general frame associated with the canonical model \mathfrak{M}_L is called universal frame and denoted by $\gamma \mathfrak{F}_L = \langle W_L, R_L, P_L \rangle$.

The connection between Tarski - Lindenbaum's algebras and dual algebras is showed in the following theorem:

Theorem 21. For every normal modal logic L the Tarski-Lindenbaum algebra L/\equiv is isomorphic to the dual $\gamma \mathfrak{F}_L^+$ of the universal frame $\gamma \mathfrak{F}_L$. The isomorphism is a map f defined by $f([\phi]_{=})=\overline{V}_L(\phi)$.

5 Building the universal frame for $\mathbf{Grz}^{\leq n}$

Now, we can approach the main problem. We will build the universal frame $\gamma \mathfrak{F}_{Grz}^{\leq n}$ generated by one variable and show that for any $n \in \mathbb{N}$ the algebra $\mathbf{Grz}^{\leq n}/_{\equiv}$ is finite. The length of formula is defined in a normal way:

Definition 22.

$$
l(p) = 1
$$

\n
$$
l(\Box \phi) = 1 + l(\phi)
$$

\n
$$
l(\phi \rightarrow \psi) = l(\phi) + l(\psi) + 1
$$

Definition 23. A point x in a frame \mathfrak{F} is of depth d iff the subframe generated by x is of depth d.

 $\textbf{Lemma 24.} \ \textit{Let } \gamma \mathfrak{F}_1 = < W_{Grz}^{\leq n} \cup \{x'_n\}, R_{Grz}^{\leq n}, P_{Grz}^{\leq n} > \textit{and } \gamma \mathfrak{F}_2 = < W_{Grz}^{\leq n}, R_{Grz}^{\leq n}, P_{Grz}^{\leq n} > \gamma \in \mathfrak{F}$ be two universal frames for $\widetilde{Grz}^{\leq n}$, where x'_n is the point of depth 1 such that $x'_n \models p$. Suppose the valuations of p do not differ in $\gamma \mathfrak{F}_1$ and $\gamma \mathfrak{F}_2$ at the same points. For any $\alpha \in \mathcal{F}^{\{\rightarrow,\square\}}$, for any $x_i \in W_{Grz}^{\leq n}$ the following equivalence holds:

$$
(\gamma \mathfrak{F}_1, x_i) \models \alpha \ \ \text{iff} \ \ (\gamma \mathfrak{F}_2, x_i) \models \alpha. \tag{22}
$$

Proof. Let $(x_1, x_2, ..., x_n)$ be any chain of points in $W_{Grz}^{\leq n}$. The proof is by induction on the depth *i* for $i = 1, ..., n$ of points x_{n-i+1} . For $i = 1$ it is obvious the point x'_n is not accessible to any other point of depth 1 and then (22) holds trivially. Suppose (22) holds at points of depth i. Now we use induction on the length of α . If $\alpha = p$ then (22) is obvious. Suppose (22) is true for α such that $l(\alpha) \leq k$ at the point x_{n-i-1} . We show (22) holds for α of length $k+1$ at the same point. We consider two cases:

- 1. Let $\alpha = \alpha_1 \rightarrow \alpha_2$ and $(\gamma \mathfrak{F}_1, x_{n-i-1}) \not\models \alpha$. Then $(\gamma \mathfrak{F}_1, x_{n-i-1}) \not\models \alpha_1$ and $(\gamma \mathfrak{F}_1, x_{n-i-1}) \not\models \alpha_2$. From inductive hypothesis we have $(\gamma \mathfrak{F}_2, x_{n-i-1}) \models \alpha_1$ and $(\gamma \mathfrak{F}_2, x_{n-i-1}) \not\models \alpha_2$ and hence $(\gamma \mathfrak{F}_2, x_{n-i-1}) \not\models \alpha$. The proof of reverse implication is analogous.
- 2. Let $\alpha = \Box \alpha_1$ and $(\gamma \mathfrak{F}_1, x_{n-i-1}) \not\models \Box \alpha_1$.
	- (a) Suppose it is because $(\gamma \mathfrak{F}_1, x_{n-i-1}) \not\models \alpha_1$. From inductive hypothesis we have $(\gamma \mathfrak{F}_2, x_{n-i-1}) \not\models \alpha_1$. Then $(\gamma \mathfrak{F}_2, x_{n-i-1}) \not\models \Box \alpha_1$.
	- (b) Suppose we have $(\gamma \mathfrak{F}_1, x_{n-i-1}) \models \alpha_1$ and for some $l \leq i$ holds $(\gamma \mathfrak{F}_1, x_{n-l}) \not\models$ α_1 . The point x_{n-l} must differ from x'_n because at x'_n every formula $\alpha \in \mathcal{F}^{\{\rightarrow,\square\}}$ is true (it is the last point in the frame $\gamma \mathfrak{F}_1$). From inductive hypothesis we have $(\gamma \mathfrak{F}_2, x_{n-l}) \not\models \alpha_1$. Then $(\gamma \mathfrak{F}_2, x_{n-i-1}) \not\models \Box \alpha_1$.

If
$$
(\gamma \mathfrak{F}_1, x_{n-i-1}) \models \Box \alpha_1
$$
 the proof is obvious.

 \Box

From Lemma 11 we deduce that if the last point validates p (and $\Box p$), then it validates all formulas from $\mathcal{F}^{\{\rightarrow,\square\}}$. On the base of Lemma 24 we need only consider universal frames with the last points not validating p . It coincides with consistency of universal frames (see (3) in Definition 1). Consistency, in general involves $Grz^{\leq n} \neq \mathcal{F}^{\{\rightarrow,\square\}}.$

Corollary 25. The universal frame $\gamma \mathfrak{F}_{Grz}^{\leq 1}$ consists of one point x such that $x \not\models p$.

Proof. Every two points x and x' not validating p are equivalent to each other and after using the selective filtration we obtain one-element frame. $\hfill \Box$

Lemma 26. The universal frame $\gamma \mathfrak{F}_{Grz}^{\leq 2}$ consists of two points x_1 and x_2 such that $x_1Rx_2, x_2 \not\models p \text{ and } x_1 \models p.$

Proof. Because of Corollary 25 it is enough to show that does not exist a point x'_1 such that x'_1Rx_2 and $x'_1 \not\models p$. We show that if such a point exists it will be equivalent to the point x_2 . We prove by induction on the length of α that for all k and $\alpha \in \mathcal{F}^{\{\rightarrow,\square\}}$

$$
x_1' \models \alpha \text{ iff } x_2 \models \alpha \tag{23}
$$

For $k = 1$ it is obvious that (23) is fulfilled. Assume (23) holds for k; we will prove it for $k+1$.

- 1. Let $\alpha = \alpha_1 \rightarrow \alpha_2$ and $x_2 \not\models \alpha$. That means $x_2 \not\models \alpha_1$ and $x_2 \not\models \alpha_2$. From assumption we have $x_1' \models \alpha_1$ and $x_1' \not\models \alpha_2$ which gives us $x_1' \not\models \alpha$.
- 2. Let $\alpha = \Box \alpha_1$ and $x_1' \models \Box \alpha_1$. $x_1' R x_2$ and hence $x_2 \models \Box \alpha_1$. Suppose $x_1' \not\models \Box \alpha_1$. If $x_1' \not\models \alpha_1$, from inductive assumption we have $x_2 \not\models \alpha_1$ and so $x_2 \not\models \Box \alpha_1$. If $x_1' \models \alpha_1$ but $x_2 \not\models \alpha_1$ then we have a contradiction with the inductive assumption.

After using the selective filtration with respect to the set $\mathcal{F}^{\{\rightarrow,\Box\}}$ we identify the points x_1' $\frac{1}{1}$ and x_2 .

Below in Diagram 1 we present both the frame $\gamma \mathfrak{F}^{\leq 2}_{Grz}$ and the Tarski-Lindenbaum algebra $\mathbf{Grz}^{\leq 2}$ being isomorphic to the dual algebra $\mathfrak{F}_{Grz}^{\leq 2+}$.

Diagram 1

Lemma 27. The universal frame $\gamma \mathfrak{F}_{Grz}^{\leq 3}$ consists of three-element chain (x_1, x_2, x_3) such that $x_2 \not\models p, x_1 \models p$ and $x_3 \models p$.

Proof. Analogous to the proof of Lemma 26. \Box The diagrams of $\gamma {\mathfrak{F}}_{Grz}^{\leq 3}$ and the Tarski-Lindenbaum algebra $\mathbf{Grz}^{\leq 3}$ are the following:

Diagram 2.

where

$$
A_1 = [p] \equiv
$$

\n
$$
A_2 = \Box A_1
$$

\n
$$
A_3 = A_1 \rightarrow A_2
$$

\n
$$
A_4 = \Box A_3
$$

\n
$$
A_5 = A_3 \rightarrow A_4
$$

\n
$$
B_1 = A_4 \rightarrow A_2
$$

\n
$$
B_2 = A_5 \rightarrow A_2
$$

The same reasoning can be applied in the case of building the universal frame with depth n.

Lemma 28. The universal frame $\mathfrak{F}_{Grz}^{\leq n}$ is an n-element chain $(x_1, x_2, ..., x_n)$ such that for any $k < n/2$:

$$
x_{n-2k} \not\models p \text{ for } k \ge 0,
$$
\n⁽²⁴⁾

$$
x_{n-(2k-1)} \models p \text{ for } k \ge 1. \tag{25}
$$

Definition 29.

$$
A_1 = p
$$
, $A_{2n} = \Box A_{2n-1}$, $A_{2n+1} = A_{2n-1} \rightarrow A_{2n}$, for $n \ge 1$.

Lemma 30. Let $\gamma \mathfrak{F}_{Grz}^{\leq n}$ be the universal frame for $\mathbf{Grz}^{\leq n}$. For any $k = 0, ..., n-1$:

$$
x_{n-k} \uparrow \models A_{k'} \text{ for any } k' \ge 2k+3. \tag{26}
$$

Proof. By induction on k. If $k = 0$ then the point x_n is the last point in the chain $(x_1, ..., x_n)$. From Lemma 28, $x_n \not\models p$ and hence $x_n \not\models \Box p$. This gives us $x_n \models A_3$. It is easy to notice that $x_n \models A_{k'}$ for $k' \geq 3$.

Assuming (26) to hold for points of depth $\leq k$, we have $x_{n-k} \uparrow \models A_{k'}$ for $k' \geq$ $2k + 3$ and also $x_{n-k} \uparrow \models A_{2k+3}$. We will prove $x_{n-k-1} \models A_{2k+5}$. If not, then $x_{n-k-1} \models A_{2k+3}$ and $x_{n-k-1} \not\models \Box A_{2k+3}$. Hence there is a point $x' \in x_{n-k-1} \uparrow$ such that $x' \not\models A_{2k+3}$, but it is a contradiction. From inductive hypothesis we have also $x_{n-k-1} \uparrow \models A_{k'}$ for $k' \geq 2k+5$. \Box

Lemma 31. Let $\gamma \mathfrak{F}^{\leq n}_{Grz}$ be the universal frame for $\mathbf{Grz}^{\leq n}$. Then

$$
x_{n-2k} \models A_{4k'+3} \text{ and } x_{n-2k} \not\models A_{4k'+1} \tag{27}
$$

\n
$$
\text{for any } 0 \le k' \le k \text{ and } 1 \le n-2k \le n,
$$

\n
$$
x_{n-(2k-1)} \models A_{4k'+1} \text{ and } x_{n-(2k-1)} \not\models A_{4k'+3} \tag{28}
$$

\n
$$
\text{for any } 0 \le k' \le k \text{ and } 1 \le n-(2k-1) \le n,
$$

Proof. We use double induction with respect to the k and k'. Let $k = 0$. Then $k' = 0$ and $x_n \not\models p$ and $x_n \models A_3$. We obtained (27). If $k = 1$ then $x_{n-1} \models p$, $x_{n-1} \not\models \Box p$ and hence $x_{n-1} \not\models A_3$. We obtained (28). Assume (27) and (28) hold for some k. We show they hold for $k + 1$. Assume now they hold for some $k' \leq k$ and take $k' + 1$ such that $k' + 1 \leq k$. Let us consider the formula $A_{4k'+7} = A_{4k'+5} \rightarrow$ $□A_{4k'+5}$. We will prove $x_{n-(2k+2)} \not\models A_{4k'+5}$. We know that $x_{n-(2k+2)} \models A_{4k'+3}$ and $x_{n-(2k+2)} \not\models \Box A_{4k'+3}$ because $x_{n-(2k-1)} \not\models A_{4k'+3}$. So, $x_{n-(2k+2)} \not\models A_{4k'+7}$ and also $x_{n-(2k+2)} \not\models A_{4k'+5}$. The proof of (28) proceeds similarly. \Box

Corollary 32. Let $\gamma \mathfrak{F}_{Grz}^{\leq n}$ be the universal frame for $\mathbf{Grz}^{\leq n}$. For any $k = 0, 1, ..., n - 1:$

$$
\max\{k': x_{n-k} \not\models A_{2k'+1}\} = k. \tag{29}
$$

Corollary 33. Let $\gamma \mathfrak{F}_{Grz}^{\leq n}$ be the universal frame for $\mathbf{Grz}^{\leq n}$. For any $k = 0, 1, ..., n - 1:$

$$
x_{n-k} \not\models A_{2k'+5} \to A_{2k'+1} \quad \text{iff} \quad k'=k. \tag{30}
$$

Because considered frames are 1- generated they are also atomic (see [2], p.270) that are frames in which every point is an atom. The class $[\phi]$ is an atom in a universal frame if there is only one point $x = (\Gamma, \Delta)$ such that $\phi \in \Gamma$. In others words the formula ϕ is possible only at one point.

Theorem 34. The following classes are atoms in every universal frame $\gamma \mathfrak{F}^{\leq n}_{Grz}$:

$$
(A_{2k+5} \rightarrow A_{2k+1}) \rightarrow A_2
$$
 for $k = 0, 1, ..., n-1$.

Proof. In the universal frame $\gamma \mathfrak{F}_{Grz}^{\leq n}$ for any $k \leq n$ we have: $x_k \not\models A_2$. So, from Corollary 33 we have the point x_{n-k} is the only point at which the formula $(A_{2k+5} \rightarrow A_{2n+1}) \rightarrow A_2$ is true.

Corollary 35. Every algebra $\mathbf{Grz}^{\leq n}/\equiv$ consists of 2^n equivalence classes generated by *n* atoms.

In the picture below the universal frame $\gamma \mathfrak{F}^{\leq n}_{Grz}$ with listed atoms is presented.

$$
x_{n} \rightarrow \begin{cases} \begin{aligned} x_{n} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-3} & \to \\ x_{n-3} & \to \\ x_{n-4} & \to \\ x_{n-5} & \to \\ x_{n-6} & \to \\ x_{n-7} & \to \\ x_{n-8} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-3} & \to \\ x_{n-4} & \to \\ x_{n-5} & \to \\ x_{n-6} & \to \\ x_{n-7} & \to \\ x_{n-8} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-3} & \to \\ x_{n-4} & \to \\ x_{n-5} & \to \\ x_{n-6} & \to \\ x_{n-7} & \to \\ x_{n-8} & \to \\ x_{n-8} & \to \\ x_{n-9} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-3} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-2} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1} & \to \\ x_{n-1
$$

Diagram 3.

Diagram 4 presents the rule of raising of the quotient algebra $\mathbf{Grz}^{\leq n}/_{\equiv}$. More exactly - the whole algebra $\mathbf{Grz}^{\leq 4}/\equiv$ is drawn with the one cube being a part of $\mathbf{Grz}^{\leq 5}/\mathbf{I}$. The diagram of $\mathbf{Grz}^{\leq 5}/\mathbf{I}$ consists of four analogous cubes not being marked in the picture. The classes of atoms are however listed.

Diagram 4.

Let

$$
(sc) \quad \Box(\Box p \to q) \lor \Box(\Box q \to p).
$$

It is well known linear Grzegorczyk's logic $Grz.3 = Grz \oplus sc$ is characterized by the linear frame $\langle \omega, \le \rangle$.

Observation 36. The $\{\rightarrow, \Box\}$ fragment of Grzegorczyk's logic over one variable is the same as the appropriate fragment of linear Grzegorczyk's logic.

References

- [1] Rasiowa, H. (1974) An Algebraic Approach to Non-classical Logics, PWN, Warszawa.
- [2] Chagrow A., Zakharyaschev M., (1997) Modal Logic, Oxford Logic Guides 35.