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Abstract
In this paper we consider formulas written in one variable in the normal

logic T2 = KTB ⊕ ¤2p → ¤3p. We present some special model for T2 to
construct infinitely many non-equivalent formulas written in one variable and
some family of models to construct continuum of logics over T2

∗ .

1 Introduction
The Brouwer system known as KTB logic is an example of non-transitive logic, be-
cause is characterized by the class of reflexive symmetric and non-transitive frames.
The non-transitivity of frames involves there are very few results concerning this
logic and its extension. One of family of extension of KTB logic is the family of
logics Tn = KTB⊕ (4n), where

(4n) ¤np → ¤n+1p

is the axiom of n-transitivity.
We see that T1 = S5 and the following inclusions hold:

KTB ⊂ ... ⊂ Tn+1 ⊂ Tn ⊂ ... ⊂ T2 ⊂ T1 = S5. (1)

As it is known each logic Tn is canonical, because adding the axiom (4n) involves
the following first order condition on frames:

(trann) ∀x,y(if xRn+1y then xRny)

where the relation of n-step accessibility is defined inductively as follows:

xR0y iff x = y

xRn+1y iff ∃z(xRnz ∧ zRy)

2 The reduction of models for T2 logic
Let us consider 1-generated fragment of T2 logic. That means the considered lan-
guage consists of formulas built up from one variable. The set of such modal formu-
las is denoted by ML1. We will show, the the restriction to the set ML1 involves
significant simplification of T2 models.
To make the reduction of models we introduce some congruence relation.
Let M = 〈W,R, V 〉 be a Kripke T2 model and ∼ an equivalence relation on W
defined as follows:

∀x,y∈W x ∼ y iff ∀α∈ML1(x |= α ⇐⇒ y |= α).
∗ Acknowledgement: The author would like to express his special thanks to Prof. Yutaka

Miyzaki for suggesting the considered in Section 3 problem and simplification of Lemmas 3 and 9,
and Dr Adam Kolany for his collaboration in formulating and proving Lemma 16.
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Definition 1. The new quotient model is a model [M] = 〈[W ], [R], [V ]〉 such that:
(i) [W ] = {[x] : x ∈ W},
(ii) [R] = {〈[x], [y]〉 : ∃x1∈[x]∃y1∈[y]x1Ry1}
(iii) [V ](p) = [V (p)] for every variable p.

Before we start the reduction we have to establish the cohesion of every frame. It is
shown in [4] that every Kripke frame F = 〈W,R〉 might be decomposed into frames
such that:

∀x,y∈W ∃n xRny

In this paper we consider only cohesive frames. Let us observe that if we add the
condition (tran2) then we immediately have:

Observation 2. Let M = 〈W,R, V 〉 be a KTB model. Then the condition (tran2)
involves that

∀x,y∈W (xRy ∨ xR2y)

Now, we are ready to start the reduction.

Lemma 3. Let M = 〈W,R, V 〉 be a KTB model such that

(i) ∀x|=p ∃y 6|=p xRy

and
(ii) ∀y 6|=p ∃x|=p xRy

After reduction we obtain the following quotient model: [M] = 〈[W ], [R], [V ]〉 such
that: [W ] = {[x], [y]}, [R] = {〈[x], [x]〉, 〈[y], [y]〉, 〈[x], [y]〉, 〈[y], [x]〉}, [x] |= p, [y] 6|=
p.

Proof. We show that every point x ∈ W such that (i) validates the same formulas
as well as every point y ∈ W such that (ii). Formally, let us define two sets:

X := {x ∈ W : x |= p and ∃x′∈W (xRx′ and x′ 6|= p)} (2)
Y := {y ∈ W : y 6|= p and ∃y′∈W (yRy′ and y′ |= p)} (3)

We show that

∀x,y∈X x ∼ y and ∀z,u∈Y z ∼ u (4)

We use induction. The length |α| of formula α is defined in the conventional way.
We see that for α = p this holds. Suppose (4) holds for formulas of the length less
than or equal to n. The cases of implication, negation, conjunction and disjunction
are the trivial ones. Let α = ¤β. Let x, y ∈ X. Suppose x 6|= ¤β. Then there exists
x′ ∈ W such that xRx′ and x′ 6|= β. If x′ ∈ X, then by the induction hypothesis
y 6|= β and also y 6|= ¤β. If x′ 6∈ X then x′ ∈ Y . From induction hypothesis there
is some y′ ∈ Y such that y′ 6|= β and y′Ry. But then y 6|= ¤β.

¤

Lemma 4. Let M = 〈W,R, V 〉 be a T2 model such that

∃x∈W x |= ¤2p (5)

Then reduction gives us the following model: [M] = 〈[W ], [R], [V ]〉 such that: [W ] =
{[x]}, [R] = {〈[x], [x]〉}, [x] |= p.
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Proof. From the assumption (5) and Observation 2 we conclude that

∀y∈W y |= p

Then of course

∀y∈W y |= ¤2p

Of course such model after reduction gives us the 1-element quotient model [M].
¤

Corollary 5. Let M = 〈W,R, V 〉 be a T2 model such that

∃x∈W x |= ¤2¬p (6)

By reduction we get the following model: [M] = 〈[W ], [R], [V ]〉 such that: [W ] =
{[x]}, [R] = {〈[x], [x]〉}, [x] 6|= p.

Proof. Analogous to the proof of Lemma 4.

Because of Lemma 4 and Corollary 5 it seems to be reasonable to consider as a
non-trivial T2 models only these ones in which

∀x∈W x 6|= ¤2p and ∀x∈W x 6|= ¤2¬p (7)

Lemma 6. Let M = 〈W,R, V 〉 be a T2 model such that |W | > 2, (7) holds and
there exist at least two points x1, x2 such that x1R

nx2 for some n ≥ 1. Then the
following two conditions do not hold together:

x1 |= ¤p (8)
x2 |= ¤¬p (9)

Proof. Obvious.
From the above consideration we conclude that the non-trivial T2 models are these
ones in which there is at least one point validating ¤p (or ¤¬p).

Let us define the following model (see Diagram 1):

Definition 7. M = 〈W,R, V 〉, where
W := {x1, x2} ∪ {yi, i ≥ 1}

The relation R is reflexive, symmetric, 2-step accessible and:

x1Rx2, x2Ryi for any i ≥ 1
yiRyj if |i− j| ≤ 1 for any i, j ≥ 1

The valuation is the following:

V (p) := {x1, x2} ∪ {y2m+1,m ≥ 1}.
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Let us define inductively a sequence of formulas Ai, i ≥ 1 constructed from one
variable p. Denote α := p ∧ ¬♦¤p.

Definition 8.

A1 := ¬p ∧¤¬α

A2 := ¬p ∧ ¬A1 ∧ ♦A1

A3 := α ∧ ♦A2

For n ≥ 2:

A2n := ¬p ∧ ♦A2n−1 ∧ ¬A2n−2

A2n+1 := α ∧ ♦A2n ∧ ¬A2n−1

Lemma 9. For any i ≥ 1 and for any x ∈ W the following holds:

x |= Ai iff x = yi

Proof. Let Yp := {y2m+1, m ≥ 1} and Y¬p := {y1} ∪ {y2m,m ≥ 1}. We see the
point x1 is the only point which validates ¤p. Analogously, the point x2 is the only
point such that: x2 |= ♦¤p ∧ ¬¤p. We also see that y2n+1 |= α for n ≥ 1 while for
the others points this not hold. Now, we use induction on i.
Case i = 1. Obviously y1 |= A1. Suppose x |= A1 for some arbitrary x ∈ W . Then
x ∈ Y¬p. Because x |= ¤¬α then there is no point y2m+1, m ≥ 1 being in such that
xR2m+1. Hence it must be x = y1.
Case i = 2. Of course y2 |= A2. Conversely, suppose x |= A2 for some x ∈ W .
First, x ∈ Y¬p and x 6= y1 because x |= ¬A1. Because x |= ♦A1 then we conclude
x = y2.
Case i=3. Obviously y3 |= A3. Suppose x |= A3 for some x ∈ W . Then x ∈ Yp.
Because x |= ♦A2 then x = y3.
Case i = 2n for n ≥ 2. The induction hypothesis is that the lemma holds for
i = 2n − 1, 2n − 2. Of course y2n |= A2n. Let us suppose that x |= A2n. Then we
have x ∈ Y¬p. Since x |= ♦A2n−1 then x must be y2n−2 or y2n. From induction
hypothesis and because x |= ¬A2n−2 we conclude x = y2n.
Case i = 2n + 1 for n ≥ 2 proceeds analogously to the above. ¤

M. Byrd in [1] proved that there are infinitely many non-equivalent formulas written
in two variables in the logic T2. He strongly believed that the number of such
formulas written in one variable is finite. His conjecture was disproved in 1981
by D. Makinson who first in [3] constructed an infinite sequence of non-equivalent
formulas in T2 written in one variable. His construction was made for strong
omnitemporal logic B(S4.3, S4) which is a supersystem of T2. By Lemma 9, we
obtain another example of a such sequence.

Theorem 10. The formulas {Ai}, i ≥ 1 are non-equivalent in the logic T2.

Proof. For any k 6= l we have in our model M that yk 6|= Ak → Al and yl 6|= Al → Ak.
Because M is T2 model then we have Ak → Al 6∈ T2 and Al → Ak 6∈ T2. ¤
From inclusions (1) and Theorem 10 we immediately have:

Corollary 11. For any n ≥ 2 the logic Tn has infinitely many non-equivalent
formulas written in one variable.
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3 The existence of a continuum of logics over T2

Y. Miyazaki in [4] and [5] proved that there is a continuum of normal modal logics
over T2. In the first paper, he considered logics determined by the so-called wheel
frame. In the second one, he showed the existence of continuum of orthologics,
and then applied an embedding from orthologics to KTB logics. In this section we
present another construction of continuum of logics over T2. We take advantage of
the model M from the previous section and construct a family of new models which
characterizes a family of extensions of T2 logic. The family is obtained by adding
new axioms written in one variable only.

Definition 12.

Mi = 〈Wi, Ri, Vi〉, i ≥ 3,

where

Wi := {x1, x2} ∪ {y1, ..., yi},
Vi(p) := {x1, x2} ∪ {y2m+1, m ≥ 1}.

and the relation Ri is a restriction of the relation R from the model M to the set
Wi.

For example, in Diagram 2 we present the diagrams of models M3 and M4.
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Let us consider another sequence of formulas built from the formulas Ai defined in
Definition 8.

Definition 13.

Bi := ( ¤p ∧ C1 ∧ C2 ∧
i∨

k=3

Ck ) → ♦[
i−1∧

k=1

♦Ak ∧ ♦(Ai ∧ ¬♦Ai+1)],

for i ≥ 3,

where
Ci := ¤p → ♦2Ai, for i ≥ 1.

Lemma 14. For any i ≥ 3 and for any x ∈ Wi the following holds:

(Mj , x) |= Bi iff i = j.

Proof. First, we show that (Mi, x) |= Bi for i ≥ 3. From the definition of model
Mi we know that (Mi, x) |= ¤p iff x = x1.
Hence, for any x 6= x1 we have (Mi, x) |= Bi. Now, we check he behavior of Bi at
x1. Because in Mi there are exactly i points y1, y2, ..., yi then

(Mi, x1) |= Ci for any i ≥ 3.
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Hence (Mi, x1) |= ¤p ∧ C1 ∧ C2 ∧
∨i

k=3 Ck. Let us notice that the point x2 is the
one such that:

(Mi, x2) |=
i−1∧

k=1

♦Ak ∧ ♦(Ai ∧ ¬♦Ai+1).

Hence (Mi, x1) |= ♦[
∧i−1

k=1 ♦Ak ∧ ♦(Ai ∧ ¬♦Ai+1)] and (Mi, x1) |= Bi.
To prove the reverse implication, suppose we have i 6= j. We show (Mj , x) 6|= Bi.
Exactly, we show that (Mj , x1) 6|= Bi. If 3 ≤ j < i then

(Mj , x1) |= ¤p ∧ C1 ∧ C2 ∧
i∨

k=3

Ck

and

(Mj , x2) 6|= ♦Ai.

The last fact involves that:

(Mj , x1) 6|= ♦[
i−1∧

k=1

♦Ak ∧ ♦(Ai ∧ ¬♦Ai+1)],

what gives us (Mj , x1) 6|= Bi.
Let us suppose that 3 ≤ i < j. Then we have

(Mj , x1) |= ♦[♦A1 ∧ ♦A2 ∧ ... ∧ ♦Ai ∧ ♦Ai+1 ∧ .... ∧ ♦(Aj ∧ ¬♦Aj+1)].

Hence of course:

(Mj , x1) 6|= ♦[♦A1 ∧ ♦A2 ∧ ... ∧ ♦(Ai ∧ ¬♦Ai+1)].

Because (Mj , x1) |= ¤p ∧ C1 ∧ C2 ∧
∨i

k=3 Ck then (Mj , x1) 6|= Bi. ¤

Lemma 15. For any substitution h : {p} → ML1 and for any x ∈ Wi, (Mi, x) |=
h(Bi).

Proof. We start with enumeration the all different modalities in T2. From [1] we
have the following sequences of positive and negative modalities (from the strongest
one to the weakest):

¤2p Ã ¤p Ã ♦¤p Ã ♦2¤p Ã ¤2♦p Ã ¤♦p Ã ♦p Ã ♦2p (10)

¤2¬p Ã ¤¬p Ã ♦¤¬p Ã ♦2¤¬p Ã ¤2♦¬p Ã ¤♦¬p Ã ♦¬p Ã ♦2¬p (11)

The model Mi is fixed. First, we consider the following substitutions h : {p} →
{¤2p, ¤p, ¤2¬p, ¤¬p, ♦¤¬p, ♦2¤¬p, ¤2♦¬p}. They are such that for any x ∈ Wi

(Mi, x) 6|= h(¤p). Hence, for any x ∈ Wi, (Mi, x) |= h(Bi).
Let us consider other substitutions: h∗ : {p} → {♦2¤p, ¤2♦p, ¤♦p, ♦p, ♦2p, ♦2¬p}.
For any such h∗ and for any x ∈ Wi we have (Mi, x) |= h∗(¤p). But then for any
x ∈ Wi, (Mi, x) 6|= h∗(A1) and furthermore (Mi, x) |= h∗(Bi).
Two substitutions do not fit to the above ones: h1(p) = ♦¤p and h2(p) = ♦¬p.
For these substitutions we have for any x ∈ Wi, (Mi, x) 6|= hk(A2), for k = 1, 2 and
hence (Mi, x) |= hk(Bi) for k = 1, 2.
Now, we should consider complex formulas. It is easy to observe that negations of
formulas from the sequence (10) give the formulas from (11) and inversely. Consid-
eration of conjunctions and disjunctions between formulas only from (10)(or only
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from (11)) gives nothing new. Suppose, we substitute p for conjunction such that
h′(p) = h(p) ∧ g(p) where g ∈ {h∗, h1, h2}. Then for any x ∈ Wi we obtain
(Mi, x) 6|= h′(¤p) and also (Mi, x) |= h′(Bi). On the other side if we take two sub-
stitutions into the set {♦2¤p, ¤2♦p, ¤♦p, ♦p, ♦2p, ♦2¬p} then the formula being
their conjunction behaves exactly in the same way as it parts and the thesis holds.
Suppose we have the following substitution: h′′(p) = h1(p) ∧ h2(p). We check that
∀x 6=x1(Mi, x) 6|= h1(¤p) and ∀x 6∈{y1,...,yi}(Mi, x) 6|= h2(¤p). Hence for conjunction
we have: ∀x∈Wi

(Mi, x) 6|= h′′(¤p), what immediately gives us (Mi, x) |= h′′(Bi)
Analogously, we should consider the case of disjunction. In this case we have to
start with the analysis of the points from Wi at which h(p) (not h(¤p)) is true (for
different h).
As we see the substitution the variable p for conjunction (or disjunction) of differ-
ent modalities leads to obtaining some trivial cases (such that h(¤p) or h(A1) is
everywhere in model false). If we build a conjunction (or disjunction) from some
modality and formula p (or ¬p), then we do not obtain a new situation. Then we
may conclude, that any substitution h : {p} →ML1 leads to the considered before
cases. ¤

Lemma 16. Let β ∈ T2 ⊕ Bi. Then for any substitution h : {p} → ML1 and for
any x ∈ Wi, (Mi, x) |= h(β).

Proof. Suppose that we have the proof β1, ...βk of the fact that β ∈ T2 ⊕Bi. Then
βk = β. We use induction with respect to length k of that proof. Case 1. k = 1.
Then β ∈ T2 ∪ {Bi}. From Lemma 15 it is clear that the thesis holds.
Case 2. Let us suppose that for the length ≤ k thesis holds. We show that for the
k-th formula in the proof it also holds.
Case 2a. If β ∈ T2 ∪ {Bi}, then it is obvious. Case 2b. If β was obtained by
derivation, then there are two following formulas βp = βt → βk, βt, p, t < k. From
inductive hypothesis we know that: for any substitution h and for any x ∈ Wi

(Mi, x) |= h(βt → βk) and (Mi, x) |= h(βt). Because h(βt → βk) = h(βt) → h(βk)
then by derivation we have: (Mi, x) |= h(βk).
Case 2c. If β is obtained generalization, then βk = ¤βp for some p < k. Again from
inductive hypothesis: (Mi, x) |= h(βp). Because x is any point from Wi then also:
(Mi, x) |= h(¤βp).
Case 2d. Suppose β is obtained by substitution. Then for some substitution g of
some formula βp, p < k we have g(βp) = βk. But then the superposition h ◦ g is
also the substitution and from inductive hypothesis we immediately have (Mi, x) |=
h ◦ g(β).

¤

Lemma 17. Bj 6∈ T2 ⊕Bi for any i, j ≥ 3 such i 6= j.

Proof. Suppose on contrary that Bj ∈ T2 ⊕ Bi for i 6= j. From Lemma 16, for
substitution being identity we immediately have that for any x ∈ Wi, (Mi, x) |=
id(Bj). This is a contradiction with Lemma 14. ¤
Let us define a new family of models MX , X ∈ ω and 1, 2 6∈ X.

Definition 18.

MX = 〈WX , RX , VX〉,

where

WX := {x1, x2} ∪
⋃

i∈X

{yi
1, ..., y

i
i},

VX := {x1, x2} ∪ {yi
2m+1, m ≥ 1, i ∈ X}.
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and the relation RX is a restriction of the relation R from the model M to the sets
{yi

1, ..., y
i
i}, where i ∈ X.

For example, in Diagram 3 we present model MX where 3, 5, 7 ∈ X.
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Diagram 3.

Now, we are able to generalize Lemmas 14-17 in the following way:

Corollary 19. For any i ≥ 3 and for any x ∈ WX the following holds:

(MX , x) |= Bi iff i ∈ X

Corollary 20. For any substitution h : {p} → ML1 and for any x ∈ WX ,
(MX , x) |= h(Bi).

Corollary 21. Let β ∈ T2 ⊕ {Bi, i ∈ X}. Then for any substitution h : {p} →
ML1 and for any x ∈ WX , (MX , x) |= h(β).

Corollary 22. For any j 6∈ X formula Bj 6∈ T2 ⊕ {Bi, i ∈ X}.
Theorem 23. There is a continuum of logics in NEXT (T2), where every member
is axiomatized by formulas on one variable.

Proof. Let X, Y ⊆ ω, (X 6= Y , 1, 2 6∈ X and 1, 2 6∈ Y ). Consider logics: T2 ⊕
{Bi, i ∈ X} and T2 ⊕ {Bj , j ∈ Y }. From Corollary 22 we know, that they are
different from each other. ¤
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