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Abstract.  This paper presents a systematic approach for obtaining results from the
area of quantitative investigations in logic and type theory. We investigate the proportion
between tautologies (inhabited types) of a given length n against the number of all formulas
(types) of length n. We investigate an asymptotic behavior of this fraction. Furthermore,
we characterize the relation between number of premises of implicational formula (type)
and the asymptotic probability of finding such formula among the all ones. We also deal
with a distribution of these asymptotic probabilities. Using the same approach we also
prove that the probability that randomly chosen fourth order type (or type of the order
not greater than 4), which admits decidable lambda definability problem, is zero.

Keywords: propositional logic, asymptotic density of tautologies, probabilistic methods in
logic and type theory.

1. Introduction

The research described in this paper is a part of the project of quantitative
investigations in logic and type theory. This paper summarizes the research
in which we develop methods of finding the asymptotic probability in some
propositional logics. Probabilistic methods appear to be very powerful in
combinatorics and computer science. From a point of view of these methods
we investigate a typical object chosen from some set. For propositional
formulas, we investigate the proportion between the number of valid formulas
of a given length n against the number of all formulas of length n. Our
interest lays in finding the limit of that fraction when n — oo. If the
limit exists, then it is represented by a real number which we may call the
density of truth of the investigated logic. In general, we are also interested
in finding the ‘density’ of some other classes of formulas. Good presentation
and overview of asymptotic methods for random boolean expressions can be
found in the paper [4] of Gardy.

We assume that the set of formulas F of a given propositional calculus
is equipped with a norm ||.|| which is a function ||.|| : F — N. Moreover,
we assume that for any n the set of formulas {¢ € F : ||¢|| = n} is finite.
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Typical norms are presented in Definitions 6 and 19. In Definition 6 the
norm ||¢|| means the total number of appearances of propositional variables
in the formula ¢, while in Definition 19, ||¢|| is the number of all characters
(without parentheses) in formula ¢.

DEFINITION. 1. We associate the density (. A) with a subset A of formulas
as follows:

o {te Al =n}
A = I Hee 7 il = n)

if the appropriate limit exists.

(1)

The number p(A) if exists is an asymptotic probability of finding a for-
mula from the set A among all formulas. It may be also interpreted as the
asymptotic density of the set A. It can be immediately seen that the density
w1 is finitely additive. So, if A and B are disjoined classes of formulas such
that p(A) and pu(B) exist then (AU B) also exists and

p(AUB) = p(A) + p(B). (2)

It is straightforward to observe that for any finite set A the density
w(A) exists and is 0 and dually for co-finite sets A the density u(A) = 1.
Unfortunately, the density p is not countably additive, so in general, the
formula (3) given below

1 (U Ai> = Zu (A;) (3)
i=0 i=0

is not true for all pairwise disjoint classes of sets {A;};cy. The good
counterexample for the equation (3) is to take as A; the singleton consisting
of the ¢ — th formula from our language. On the left hand side of (3) we get
1 but on right hand side u (A;) = 0 for all i € N.

DEFINITION. 2. By a random variable X we understand the function

X: F—N

which assigns a number n € N to a formula in such a way that for any n the
density p ({6 : X(¢) = n}) exists and moreover

Y n({¢: X(¢)=n}) =1
n=0
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DEFINITION. 3. By a distribution of a random variable X we mean the
function X : N — R defined by:

X :Non—u({¢: X(¢)=n})€eR

DEFINITION. 4. The expected value, variance and standard deviation are
defined in the conventional way by:

E(X) = Y p-X(p), (4)

p=0
D*(X) = E((X-B(X))*) =E(X? -~ (E(X)), (5)
= ) - X(p) - (B(X))%,
p=0

so the standard deviation of X is \/D?(X)

2. Generating functions

In the whole paper we present some properties of numbers characterizing the
amount of formulas in different classes and languages, and we are concerned
with the asymptotic behavior of these numbers. The main tool for dealing
with asymptotics of sequences of numbers are known in combinatorics as
generating functions. A nice exposition of this method can be found in [14],
[1] and [2]. See also papers [16], [15], [9] [11] for the presentation of this
method in logics.

Suppose that we have a system of non-linear equations E’ =®;(z,y1,.--Ym)
for 1 < j < m, where any y; = > .7, a;2". The following result known
as Drmota-Lalley-Woods theorem (see [2], Thm. 8.13, p.71) is of great
importance in the both cases of solving the system explicitly or implicitly.

THEOREM. 5. Consider a nonlinear polynomial system, defined by a set of
equations

{V =2i(z01,0m)}, 1<j<m
satisfying the following properties:
1. a-properness: ® is a contraction, i.e. satisfies the Lipschitz condition

d((I)(y17 "'7ym)7(1)<y/17 "'7y;’n)) < Kd((yl’ "'7ym)7 (yi? "‘7y:’n))7 K < 1
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2. a-positivity: all terms of the series ®;(y') are >0

3. a-irreducibility: the dependency graph of the algebraic system is built on
m vertices: 1,2,...,m; there is an edge from a verter k to a vertex j if
y; appears in ®i. The algebraic system is a irreducible if its dependency
graph is strongly connected.

4. a-aperiodicity: z (not z* or 23...) is the right variable, that means for
each y; there exist three monomials z°, 20, and z¢ such that b — a and
c — a are relatively prime

Then

1. All component solutions y; have the same radius of convergence p < co.

2. There exist functions h; analytic at the origin such that

yj =hi(vV1=2/p), (z—p") (6)

3. All other dominant singularities are of the form pw with w being a root
of unity.

4. 1If the system is a-aperiodic then all y; have p as unique dominant singu-
larity. In that case, the coefficients admit a complete asymptotic expan-
sion of the form:

[2"Jy;(2 D dkn TR (7)

k>1

From (7) there is a simple transition by the so called transfer lemma from
(3], to a formula defining the value of the coefficients [2"]y;(2). So, the
a-aperiodicity of a system of equations is a very desirable property. The
application of the above theorem will proceed in the following way. Suppose
that we have two functions fr and fr enumerating the tautologies of some
logic and all formulas. Suppose they have the same dominant singularity p
and there are the suitable constants aq, aso, 31, (B2 such that:

fr(z)=a1 — i/ 1—2/p+O(1—z/p), (8)
fr(z) = a2 — Bo/1—2/p+O(1 —2/p). (9)

Then the density of truth (probability that a random formula is a tau-
tology) is given by:

_ i EMr(2) B
M = e G) B

We apply the approach in two examples in the next section.

(10)
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3. Densities of implicational reducts of logics

In this section we present some results obtained in [11], [16], and [6] charac-
terizing the density of tautologies in a language with the only connective of
implication.

DEFINITION. 6. The set of formulas F; over k propositional variables is a
minimal set consisting of these variables and closed under implication. In
this definition the norm ||.|| measures the total number of appearances of
propositional variables in the formula. The set of formulas of length n is
denoted by FF.

The number of formulas in F¥ is finite for any n € N and will be de-
noted by |ij| . From Definition 6 we see that any formula from 7, may be
interpreted as a binary planar tree with the internal nodes labeled by the
operator —, and the external ones by propositional variables. Then we have
immediately:

LEMMA. 7. The numbers |F7’f| are given by the following recursion:

|F§| = 0, |Ff|=k, (11)
n—1
EF = > IFIF (12)
i=1
PRrROOF. Obvious. ]

LEMMA. 8. The generating function fgr for the numbers F¥ is the following:

1—+v1—4kz

frr(z) = 5 (13)

PROOF. From the recurrence (12) we see that the generating function fpx
has to fulfil the following equation:

frr(2) = fru(z) + k. (14)
By solving (14) with the boundary condition fz+(0) = 0 we obtain (13). =

Now, we study the case when k = 1. Let us notice that in this case the
numbers F! are the well-known Catalan numbers (see [2], [11] and [14]). In
the paper [11] it is shown that:
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LEMMA. 9. The Lindenbaum algebra AL(CI7”) for the implicational reduct
of classical logic of one variable consists of the following two classes:

Nl = [p]57
T = [p — pl=
The truth-table for the algebra AL(CI;”) is as follows:

|~ [N T ]

N[ Tt 11

TV N 7T
Table 1

From Table 1 we obtain a suitable recurrence for the numbers T}}, N},
which may be transformed into the following system of functional equations:

fr(z) = fe(2)fr(2) + f3n(2), (15)
fni(z) = fn(2)fr(z) + 2 (16)
From finite additivity (2) we know that fr1 = fp1 — fy1. We are able
to solve the system explicitly (compare [11] Lemma 7.4) and:

LEMMA. 10. The generating function fr1 is the following:

3—V1—4z—/2+2/1—4z+ 122
fri(z) = 1 :

To take advantage of Theorem 5 and the formula (10), let us notice that
the system of equations (15)-(16) is a-proper, a-positive, a-irreducible and a-
aperriodic. Hence the functions: fr1, fr1 and fa1 have the unique dominant
singularity zp = 1/4. The expansions of fr1 and fr1 around zp = 1/4 are
the following:

(17)

fri(z) = 3_4‘/5—(1+\f)\/l—4z+0(1—4z), (18)

1
fri(z) = 3 —2vV1—4z+ 0(1 — 4z2). (19)
THEOREM. 11. The density of the class Cly” is the following:

(14 V5
w(CIly) = (_+25) —;+‘1/05 ~0.7236... . (20)

'The number u(CI7") is closely related to the golden ratio. Namely: golden ratio=
5u(Cly) — 2.
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The above theorem describes the asymptotic density of the set of tau-
tologies in the simplest implicational language, which is the language of one
propositional variable (see [11]). The natural inspiration for this research
comes from the typed lambda calculus, in which the set of simple types
can be identified under the Curry-Howard isomorphism with a set of impli-
cational formulas. Under this isomorphism the class of provable formulas
can be understood as the class of inhabited types. Notice that the density of
provable formulas in this language is surpassingly hight. Notice also that the
classical tautologies in this language coincide with the intuitionistic ones.

THEOREM. 12. (see [11] page 592) For k =1 the asymptotic density of the
set of intuitionisticaly provable formulas T, exists and is:

Vb
~— ~0.7236... .
10

| =

wT7) =

THEOREM. 13. Implicational classical and intuitionistic logics of one vari-
able are identical.

A proof by counting can be found in [15]. It is based on the fact that
generating functions for the classical and intuitionistic logics are identical.

Analogously, we may consider the implicational classical and intuitionis-
tic logics with two propositional variables, which now are different. We will
show however, that from the quantitative point of view, the difference is not

significant. We will give a detailed approach in the case of classical logic
Cl57; see [6].

LEMMA. 14. The Lindenbaum algebra AL(CI3;") (presented in the form of
diagram) for the implicational reduct of classical logic of two variables con-
sists of the following siz classes:

A = [p]Eu

B = [Q]Ea

C = p—ds=,

D = [g—rpl=,

E = [p—q) —dq-=,
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Below the diagram of the algebra AL(CI;”) is presented

T2

D C

A
Diagram 1.

The appropriate truth-table is the following:

|- A[B[C|D]|E|T]
A2 CclcCc|T?[1*| 12
B D|1T*|T?°| D |T1T%|T?
CllA|E|T°| D|E|T?
D|E|B|C|T?| E|T?
El|lD|cCc|cCc|D]|1T*|1T?
°| A| B|C|D| FE|T?
Table 2.

From Table 2 we obtain a suitable recurrence (for the numbers T2, A,
By, Cyn, Dy, E,). It may be transformed into the following system of six
functional equations:

fa
fB
fc
Ip
IE
fr2

falfo+ fr2) + 2, (21)
fB(fp + fr2) + 2, (22)
fe(fo+ fe+ fr2 + fa) + fe(fa+ fE) (23)
fo(fe+ fo+ fr2+ fe) + fa(fB + fE) (24)
fe(fe+ fp+ fr2) + fefc (25)

fr2fr2 + fE(fa+ fB+ fB) + fO(fa+ D) + fo(fB + fo) +
(

+f5 + f3. 26)

We are able to solve the system explicitly (compare with Lemma 22 of [6]).
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LEMMA. 15. The generating function fp2 is the following:

V25U -4z — [ + 1+ S+ fp2 =3

fr2(z) = (27)

2
where S=+1-fp+22
U=+6z— fr+1.

Let us notice that the system of equations (21)-(26) is again a-proper, a-
positive, a-irreducible and a-aperiodic. The common dominant singularity is
29 = 1/8. The expansions of fr2 and fr2 around zp = 1/8 are the following:

fra(z) = 3(5—f—f2<*/ﬁ)
3 5
RCRR e AL VI=82+0(1 - 82),

+2 11— ——
V3 V15

fr2(z) = % —4V1 -8z +0O(1 — 8z).

THEOREM. 16. (see Kostrzycka in [6]) The asymptotic density of the set of
classical tautologies Cl5 exists and is the following:

(Cly") = L P ﬂ+v%+\/% ~ 0.5190 (28)
/.1/ 2 —_— 2 \/g é/ﬁ ~~ . “ e e e

The same approach we may apply to intuitionistic implicational logic of
two variables:

THEOREM. 17. (see Kostrzycka in [6]) The asymptotic density of the set of
intuitionistically provable formulas I,” exists and is the following:

u(I;") ~ 0.5043... . (29)

The exact analytical formula for (29) is extremely complicated and too
long to be written here. From (28) and (29) we have another characterization
of the implicational fragments of intuitionistic and classical logics:

THEOREM. 18. [Relative density] The relative density of intuitionistic tau-
tologies among the classical ones in the language F5” is more than 97%.

w((I;7)/(Cly)) =~ 0.5043/0.5190 ~ 0.9715.... . (30)
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4. Densities of implicational-negational tautologies

In the next two theorems we change the language. We consider formulas built
by means of implication and negation from one variable. We can see that
adding the functor of negation has negative impact on the density of tau-
tologies. Moreover, as a result of the paper [9], we are able to find the exact
density of the intuitionistic fragment of classical logic in this language. We
can also see by Theorem 23 that within the reacher language with negation
the density of purely implicational tautologies in the class of all tautologies
is 0.

DEFINITION. 19. The set F, " over k propositional variables is the minimal
set consisting of these variables and closed under implication and negation.
In this definition the norm ||¢|| means the total number of characters (without
parentheses) in the formula ¢.

THEOREM. 20. (see Zaionc in [15]) The asymptotic density of the set of
classical tautologies Cl; " exists and is:

wClLT) = CHR — ! + o
1 (WV13) -~ (WVI7) g fo(vaal -9)  2/a42(v221 - 9)
~ 04232 .

THEOREM. 21. (see Kostrzycka, Zaionc in [9]) The asymptotic density of
the set of intuitionisticaly provable formulas I;"" exists and is:

p(I77) ~ 0.3952.... . (31)

In the paper [9] the reader can find the analytical formula for (31). Putting
together Theorems 20 and 21 we obtain:

THEOREM. 22. [Relative density (see Kostrzycka, Zaionc in [9])] The rel-
ative density of intuitionistic tautologies among the classical ones in the
language F| " is more than 93 %.

p((I77)/(Cl) = 0.93 (32)
In the paper [9] the analytical formula for (32) is presented.
Let us also compare the sets of classical tautologies in different languages:
F; 7 and Fy.
THEOREM. 23. The probability of finding classical implicational tautology

among classical implicational-negational ones is 0 (in the sense of the norm
in Definition 19).
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5. Densities of modal tautologies

To distinguish modal tautologies from the non-modal ones we need to con-
sider a language with some modal operator. We have chosen the operator
of necessity (0. We will consider set F;~ ' of formulas built up from one
propositional variable p by means of necessitation and implication only.

Our research so far has focussed on two modal logic: some normal ex-
tensions of Grzegorczyk logic and the Lewis logic S5. In the choice we were
governed by the simplicity of the appropriate modal algebras.

The Grzegorczyk logic Grz is characterized as an extension of S4 by the
axiom

O@(p — Op) — p) — p.

In [7] we examined normal extensions of Grzegorczyk’s logic obtained by
adding to the set of axioms the formulas J,, defined as follows:

DEFINITION. 24.
Ji = OUp1 — p1,
Jn+1 = O(Dpn—l-l/\ ~ Jn) — Pn+1-

We will consider the logics Grz=" = Grz @ J,. They contain the logic
Grz and the following inclusions hold:

S4C Grz C ... C Grz=" C Grz=""! C ... ¢ Grz=". (33)

The Lewis modal logic S5 is characterized as an extension of S4 by the
axiom

(sym) p — OOp.
and the following inclusion holds:

S4 C S5. (34)

In [7] and [8] we characterized the implicational-necessitional modal al-
gebras of Grz=" and S5. In the case of Grz=? we obtained four-element
modal algebra, whereas in the cases of Grz=? and S5 we had two differ-
ent eight-element modal ones. In the first case we were able to determine
the generating function for the class of tautologies explicitly and count the

density as follows:
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THEOREM. 25. (see Kostrzycka in [7]) The asymptotic density of the set of
Grzegorczyk’s tautologies Gr]['zlS2 exists and 1s:

w(Grz=?) ~ 0.6127... .

In the cases of eight-element modal algebras counting the densities is
connected with solving a system of eight non-linear functional equations.
We were able to do it only numerically and obtained the following results:

THEOREM. 26. (see Kostrzycka in [8]) The densities of truth of the logics
<3 :
Grzy" and S51 exist and:

n(Grzs?) ~ 0.6088...,
©(S51) =~ 0.6081... .

6. Probability distribution, typical formulas, typical tautolo-
gies

In this section we will discuss some questions concerning probability distribu-
tion (see Definition 3) of formulas written in the implicational language 7.~
(see Definition 6) equipped with the norm ||.|| measuring the total number
of appearances of propositional variables in a formula.

DEFINITION. 27. By F;”(p) we mean the set of formulas having p premises,
i.e. formulas which are of the form: T =1 — (- — (17, — «)), where o is
a propositional variable.

DEFINITION. 28. A simple tautology is the formula T € F, in the form

r=m o (e (1 — ),

such that there is at least one component T; identical with «. Let Gy be the
set of all simple tautologies in F, and Gi(p) be the set of simple tautologies
with p premises .

Evidently, a simple tautology is a tautology. Our goal is to find how big
asymptotically is the fragment of simple tautologies within the set of all for-
mulas and also how big is the fragment of simple tautologies with p premises
in the set of all simple tautologies.

DEFINITION. 29. Let us defined the random variable X : F,~ +— N (see Defi-
nition 2) which assigns to implicational formula the number of its premisses.
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In Theorem 31 we will check the correctness of the above definition since for
any n the density p({¢: X(¢) = n}) exists and moreover

Y n({e:X(¢)=n}) =1
n=0

We wish to answer two questions:
QUESTION 1: What is the probability that a randomly chosen implica-
tional formula admits p premises?

QUESTION 2: What is the probability that a randomly chosen implica-
tional simple tautology admits p premises?

LEMMA. 30. (see [11]) The asymptotic density of the set of all formulas
with p premisses F,(p) exists and is:

WF (P) = Gy (35)

THEOREM. 31. The random variable X has the following distribution (see
Definition 3):

p
X(p) = 5

The expected value is E(X) = 3, the variance is D*(X) = 4. The standard
deviation of X is 2.

From the whole discussion we can surprisingly see that a typical implicational
formula has exactly 3 premisses. For example, the amount of formulas with
the number of premises laying between 1 and 5 ie. which are typical +
standard deviation is 57/64 which is about 89%.

Now, we will answer the second question. We will show the difference be-
tween distribution of any formulas with p premisses and the distribution of
simple tautologies only.

DEFINITION. 32. For every k > 1 separately, let us define the random
variable Yy, which assigns to an implicational simple tautology in the language
Fi. the number of its premises.

THEOREM. 33. (Zaionc [16]) The random wvariable Yy has the following
distribution:

opt1 P pppp—1

-\ @k+1)% /[ p (2k — 1)P~1
Yelp) = g < )
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The natural questions are: what does the distribution of true sentences for
very large numbers k look like and does there exist a uniform asymptotic
distribution when k, the number of propositional variables in the logic, tends
to infinity? The answers are the following:

LEMMA. 34. (Zaionc [16]) In this lemma the number of premises p > 0 is
fized.

op+1 4pkp—1

L @R+ p 2k —1)P~1\  p(p—1)
k—oo 4k -+ 1 2p+2

Let us name the limit distribution by Y (p) = %. Since:

9p+2

i p(p — 1) -1 (36)
p=0

then the expected value of Y, is:

— p(p—1)
E(Yoo) =) 0y =5
p=0

The variance of Y, is:

D

o0
D*(Yo) = Zp2p(§p:2—25:31—25:6
p=0

Comparing this result with the distribution X (p), the reader can easily check
that starting with k£ = 1 the expected value of the number of premises for
simple tautologies is substantially greater than 3 and is growing asymptoti-
cally to 5 and

lim B(Y;) = 5. (37)
The asymptotical behavior of D?(Y}) is
Jim D?(Yy) = 6. (38)

So, it is clear now that:
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¥p >0 lim Yilp) = Ylp) (39)
Jim E(Yy) = E(Ya) (40)
Jim D*(Yy) = D*(Ya) (41)

The componentwise convergence presented in Lemma 34 and summarized by
the formula (39) can be extended to a much stronger uniform convergence.
In fact, the distribution Y., can be treated as a good model of a distribu-
tion for simple tautologies of the language F when the number k& of atomic
propositional variables is large.

THEOREM. 35. (Zaionc in [16]) The sequence of distributions Y, converges
uniformly to the distribution Yuo.

We can also see the following surprising result

THEOREM. 36. (Zaionc [16]) For fixred k >0 and p > 0

— 1\t
W@/ F ) =1- (250 ) (42)

This result is somehow intriguing. It shows how big asymptotically is the
fraction of simple tautologies with p premises among all formulas with p
premises. We can see that with p growing, this fraction becomes closer and
closer to 1. Of course the fraction of all tautologies (not only the simple ones)
with p premises is even larger. So the density of truth within the classes of
formulas of p premises can be as big as we wish. For every ¢ > 0, we can
effectively find p such that almost all formulas with p premises (except a
tiny fraction of the size ) asymptotically are tautologies. This should be
contrasted with the results proved in Theorem 6.3 and Corollary 6.10 page
587 in [11]. It shows that density of truth for all p's together is always of
the size O(1/k). The result for every p treated separately is very different.

7. Counting types in typed A\ calculus

In this section we are going to consider again the language F;~ of pure
implication with one propositional variable O, introduced in the section 3.
Under the Curry-Howard isomorphism we are going to look at this language
from the point of view of simple types. We shall consider a simple typed
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lambda calculus with a single ground type O. Functions rank and number of
arguments arg for type 7 are defined in the standard way by: arg(O) = 0,
rank(O) =1 and arg(nn — ... = 7, — O) = n and rank(n — ... = 7, —
0O) = max;—1._nrank(r[i]) + 1. A type 7 is called regular if rank(r) < 4
and every component of 7 has arg < 1. This implies that the only allowed
components for regular types are O, O — O and (O* — O) — O for
any k£ > 1. We will refer to the lambda definability problem defined
independently by Statman and Plotkin (see Statman-Plotkin conjecture in
[13] and [12]). A full type hierarchy { D },cr is a collection of finite domains,
one for each type. The whole hierarchy is determined by Dp. We assume
that the set Do is a given finite set and D,_,, is a collection of all functions
from D; to D,. Therefore all D, are finite. It can be noted that any type
T term is interpreted as an object from D,. Hence, closed terms in the
full type hierarchy have a fixed interpretation. A function f € D, is called
lambda definable if there is a closed type 7 term T that is interpreted as
f. For the given type 7, the 7-lambda definability problem is the decision
problem to determine whether or not for the given finite Do and the given
object f € D, f is lambda definable. In this case the type 7 is not a
part of the problem. It has been proved by Loader [10] that the lambda
definability problem in general is undecidable which means that Statman-
Plotkin conjecture fails (see [13] and [12]). There is a simple characterization
of the types with decidable lambda definability problem.

THEOREM. 37. X definability problem is decidable for all rank 1, 2, 3 types
and for regular rank 4 types.

PROOF. First three cases are trivial. The decidability for rank 4 regular
types is proved in [16]. [

THEOREM. 38. A\ definability problem is undecidable for any non reqular
rank 4 type.

PROOF. The proof is based on the observation that the type L = ((O —
0) — 0) = (0O — (O — O) — 0) is the simplest non regular type of
rank 4. Therefore by a simple lambda definable coding, I can be embedded
into any non regular type of rank 4. But then the A definability problem is
undecidable for L (see [5]) . ]

As we can see from Theorems 37 and 38 there are rank 4 types with decidable
and with undecidable lambda definability problem. So, the following natural
problem arises.
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QUESTION: What is the probability that a randomly chosen rank
4 type admits decidable lambda definability problem?

7.1. Counting types

In this section we present some properties of numbers characterizing the
amount of types of different ranks.

DEFINITION. 39. By F}' and G} we mean respectively the total number of
types of rank k and size n and the total number of types of rank < k and
size n, So:

Fp = #{6€F o] =n andrank(d) = K}, (43)
Gy = #{peF:|¢ =n and rank(p) <k}. (44)

LEMMA. 40. F}' and G} are given by the following mutual recursion:

F' = ifn=1 then1 else 0 (45)
G! = ifn=1thenl else0 (46)
n n
Fian = Y RGT+) G (47)
i=0 i=0
k1 = Gi+Fg (48)
PrROOF. Obvious application of the definition of rank. [ |

7.2. Generating functions for counting types

We are going to use the generating functions technique for proving the
asymptotic behavior of the appropriate fractions. For this purpose, let us de-
fine for every k > 1 the pair of the generating functions: fi(z) = > oo, Fyz'
and gi(z) = Y oo Giz'.

LEMMA. 41. The functions fi and g satisfy the following recursive defini-
tions:

fer(z) = Jm (49)

ger1(z) = gr(z) + frpr(2) (50)
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PROOF. By a simple encoding of the recursive equations (45), (46), (47) and
(48). |

THEOREM. 42. Let R C T be the set of all reqular types of rank 4. Let R,
be the number of elements of R of size n. The generating function fr for
the sequence R, is

23
R = T oA ==
PROOF. Long but elementary proof may be found in [16]. [

THEOREM. 43. The density of rank 4 types with decidable \ definability
problem among all rank 4 types is 0.

ProOOF. It is enough to find the closed form for the involved generating
functions. Namely, for all rank 4 types the function calculated from equality
(49) is

.CE4

falz) = 1—5x+ 7x2 — 223

n
which can be easily turned into the power series O ((%) ) The closed
form term for the function fr(z) enumerating regular 4 order types returns
n
rate of Fibonacci numbers; namely: O ((1‘*'2—‘/5) ) [ |

It doesn’t help much to add all the third order types, for which we know
that the lambda definability problem is decidable. Undecidability is again a
dominating factor.

THEOREM. 44. The density of types of rank < 4 with the decidable A defin-
ability problem among all types of rank < 4 is again 0.

PrOOF. It is enough to find the closed form for the involved generating
functions. For all rank < 4 types the function is

x — 22

94(w) = 1— 3z + 22

n
The respective power series is again O (<3+T\/5) ) . The function g3 obtained

. The closed form term for the function

from the equality (50) is #)3(1_@
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fr(z) + g3(x) enumerating regular 4 order types plus all third order types
returns rate of O (2"). [ ]
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