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Abstract

In this paper the equivalential reducts of classical and intuitionistic log-
ics over language with two propositional variables are characterized. Next,
the size of the fraction of tautologies of these logics against all formulas are
investigated. To do that quite non-logical methods are used.

1 Introduction
For the given logical calculus we investigate the proportion of the number of true
formulas of a certain length n to the number of all formulas of such length. We
are especially interested in asymptotic behavior of this fraction when n tends to
infinity. If the limit exists it is represented by a real number between 0 and 1 which
we call the density of truth for the investigated logic.
Let L be some logical calculus. Let |Tn| be a number of tautologies of length n of
that calculus and |Fn| be a number of all formulas of that length. We define the
density µ(L) as:

µ(L) = lim
n→∞

|Tn|
|Fn|

This paper is continuation of quantitative research in different logics. Our interest
concerns mostly the classical and intuitionistic logic. Until now, the density of truth
for classical (and intuitionistic) logic of implication of one and two variables are
known (see [Moczurad, Tyszkiewicz and Zaionc 2000], [Kostrzycka 2003]) as well as
the density of implicational-negational fragments of these calculi with one variable
(see [Zaionc 2004], [Kostrzycka and Zaionc 2004]).
In case of equivalential reducts of these logics the problem of existence of the density
of truth is more complicated. It has been proved in [Matecki 2005] that equivalential
reduct of classical logic is not asymptotically convergent, what means that the
density of truth (as a limit) does not exist. However it is possible to count limit
superior and limit inferior for the fractions of tautologies, which seems to be worth
counting. In this paper we consider the case of equivalential reduct of intuitionistic
logic with two variables and compare the obtained result with the one for classical
logic.

2 Equivalential reduct of intuitionistic logic INTE

The equivalential reducts INTE of intuitionistic propositional logic was widely
investigated in its algebraic counterpart - equivalential algebras (for example see
[Słomczyńska 1996], [Wroński 1993]).
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The class E of equivalential algebras is equationally definable by the following iden-
tities:

(x ↔ x) ↔ y = y

((x ↔ y) ↔ z) ↔ z = (x ↔ z) ↔ (y ↔ z)
(x ↔ y) ↔ ((x ↔ z) ↔ z) ↔ ((x ↔ z) ↔ z) = x ↔ y

The class E forms a variety and is locally finite. The cardinality of the n-generated
free algebra FE(n) is known only for n = 1, 2, 3 and is equal to 2, 9, 4415434,
respectively; see [Wroński 1993].
The n-generated free algebra FE(n) is isomorphic to the Lindenbaum algebra AL(E(n))
over language consisted of n variables. We will consider the algebra AL(E(n)) with
n = 2.
Let us define the language F{↔} consisting of equivalential formulas with two propo-
sitional variables p and q:

Definition 1.

p, q ∈ F{↔}
φ ↔ ψ ∈ F{↔} iff φ ∈ F{↔} and ψ ∈ F{↔}

In the set F{↔} we can introduce an equivalence relation ≡ in the conventional
way:

α ≡ β iff α ↔ β ∈ INTE (1)

The equivalence relation ≡ is also a congruence relation and the quotient algebra
F{↔}/≡ is called the Lindembaum algebra of the logic INTE . We denote it by:

AL(INTE) = F{↔}/≡ (2)

From [Wroński 1993] we have

Theorem 2. The Lindembaum algebra AL(INTE) consists of the following 9 equiv-
alence classes:

I = [p]≡
II = [q]≡

III = [p ↔ q]≡
IV = [(p ↔ q) ↔ q]≡
V = [(p ↔ q) ↔ p]≡

V I = [((p ↔ q) ↔ q) ↔ p]≡
V II = [((p ↔ q) ↔ p) ↔ q]≡

V III = [(((p ↔ q) ↔ q) ↔ p) ↔ (((p ↔ q) ↔ p) ↔ q)]≡
T = [p → p]≡

The behavior of the operator ↔ is presented in Table 1. Diagram of the algebra
AL(INTE) is presented in Figure 1.
Let us remind the notion of the equivalential filter.

Definition 3. Let A be an equalential algebra. By a filter of A we mean a non-
empty subset F of A such that for all a, x ∈ A:
(i) if a ∈ F , then (a ↔ x) ↔ x ∈ F ,
(ii) if a ∈ F and a ↔ b ∈ F , then b ∈ F .
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Figure 1: Diagram of the algebra AL(INTE)
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Table 1: The truth-table of algebra AL(INTE)
↔ I II III IV V VI VII VIII T
I T III V VI III IV I IV I
II III T IV III VII II V V II
III V IV T V IV III III III III
IV VI III V T III I IV I IV
V III VII IV III T V II II V
VI IV II III I V T VIII VII VI
VII I V III IV II VIII T VI VII
VIII IV V III I II VII VI T VIII
T I II III IV V VI VII VIII T

Figure 2: Diagram of the algebra AL(INTE)/K
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where A = I ∪ IV, B = II ∪ V

Table 2: The truth-table of the algebra AL(INTE)/K

↔ A B III K
A K III B A
B III K A B
III B A K III
K A B III K
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Let us observe that there is only one proper equivalential filter in the algebra
AL(INTE). This is the set K = {T, V I, V II, V III}. The new quotient algebra
AL(INTE)/K is presented in Figure 2 and the operation of↔ in it is characterized
in Table 2.

Lemma 4. The algebra AL(INTE)/K is equal to the Lindenbaum algebra AL(CLE)
of the classical propositional logic of equivalence with two variables.

Proof. For the proof we split the set of all formulas into some classes according to
formulas’ behavior on all possible evaluations. Since we have classical formulas built
with exactly two propositional variables we can evaluate them by four valuations:
ν1 associating 0 to p and 0 to q, ν2 associating 0 to p and 1 to q, ν3 associating 1
to p and 0 to q and ν4 associating 1 to p and 1 to q .
For any i, j, k, l ∈ {0, 1} by F i,j,k,l we mean the set of formulas φ from F{↔} such
that ν1(φ) = i, ν2(φ) = j, ν3(φ) = k and ν4(φ) = l.
There are exactly four classes:

F 0,0,1,1

F 0,1,0,1

F 1,0,0,1

F 1,1,1,1

The four classes F i,j,k,l are ordered by assuming that F i,j,k,l ≤ F i′,j′,k′,l′ iff i ≤ i′,
j ≤ j′, k ≤ k′ and l ≤ l′. On the classes F i,j,k,l we can establish an operation of
equivalence ↔ by F i,j,k,l ↔ F i′,j′,k′,l′ = F i⇔i′,j⇔j′,k⇔k′,l⇔l′ where ⇔ stands for
the classical equivalence defined on the set {0, 1}. By the construction above we
get the four element lattice, exactly the same as we can see in Figure 2. We have
the following equalities:

A = F 0,0,1,1

B = F 0,1,0,1

III = F 1,0,0,1

K = F 1,1,1,1

Table 2 is identical with the one defined by operations ⇔ described above. As we
can see the class K is the class of classical tautologies.

3 Counting formulas
In this section we establish some properties of numbers characterizing the amount
of formulas in different classes defined in our language. First, set up the way of
measuring length of formulas.

Definition 5. By |φ| we mean the length of formula φ which is the total number of
occurrences of propositional variables in the formula, excluding the equivalence sign
and parenthesis. Formally

|p| = 1
|q| = 1

|φ ↔ ψ| = |φ|+ |ψ|

We will consider the set Fn ⊆ F{↔} of all formulas of the length n. Its appropriate
subclasses were defined as follows:
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Definition 6.

Yn = Fn ∩ Y for any Y ∈ 2AL(INTE)

The number of formulas in Fn is finite for any n ∈ N and will be denoted by |Fn| .
Consequently any subset from the class 2AL(INTE) is also finite for any n ∈ N.
Definition 7. By |Yn| we mean the number of formulas from the class Yn.

From Definition 1 we see that any formula from F{↔} may be interpreted as a
binary planar tree with the internal nodes labelled by the operator ↔ and the
external nodes by the propositional variables p and q. Then we have immediately:

Lemma 8. The numbers |Fn| are given by the following recursion:

|F0| = 0, |F1| = 2, (3)

|Fn| =
n−1∑

i=1

|Fi||Fn−i| (4)

Proof. Obvious.

The numbers |Fn| are in close connection with the Catalan numbers Cn. The well
known non-recursive formula for Cn is the following:

Cn =
1
n

(
2n− 2
n− 1

)
(5)

It is easy to observe that |Fn| = 2n · Cn.

4 Generating functions
The main tool for dealing with asymptotic of sequences of numbers are generating
functions; see for example [Wilf 1994],[Flajolet and Sedgewick 2001]. Suppose, we
have a system of non-linear equations −→yj = Φj(z, y1, ...ym) for 1 ≤ j ≤ m, where
any yj =

∑∞
n=0 ajz

n. The following result known as Drmota-Lalley-Woods theorem
is of great importance in both cases of solving the system explicitly or implicitly;
see [Flajolet and Sedgewick 2001], Thm. 8.13, p.71:

Theorem 9. Consider a nonlinear polynomial system −→y = Φ(−→y ) that is a-proper,
a-positive and a-irreducible. In that case, all component solutions yi have the same
radius of convergence ρ < ∞. Then, there exist functions hj analytic at the origin
such that

yj = hj(
√

1− z/ρ), (z → ρ−). (6)

In addition, all other dominant singularities are of the form ρω with ω being a
root of unity. If furthermore the system is a-aperiodic then all yj have ρ as unique
dominant singularity. In that case, the coefficients admit a complete asymptotic
expansion of the form:

[zn]yj(z) ∼ ρ−n


∑

k≥1

dkn−1−k/2


 . (7)
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The expression from the right side of (7) may be transformed by the so called
transfer lemma [Flajolet and Odlyzko 1990] into formula defining the value of the
coefficients [zn]yj(z) explicitly. So, the a-aperiodicity of a system of equations is a
very desirable property. Unfortunately, in our considerations this property does not
take place and we need another formula to approximate the coefficients [zn]yj(z).
We take advantage of the Szegö Theorem from [Szegö 1975] [Thm. 8.4], see also
[Wilf 1994] [Thm. 5.3.2].

Lemma 10. [Szegö] Let v(z) be analytic in |z| < 1 with a finite number of singu-
larities eiϕ(k), k = 1, ..., s at the circle |z| = 1. Suppose that in the neighborhood of
each eiϕ(k), v(z) has the expansion of the form

v(z) =
∑

p≥0

v(k)
p (1− ze−iϕ(k)

)a(k)+pb(k)
,

where a(k) ∈ C and b(k) > 0 and the branch chosen above for the expansion equals
v(0) for z = 0. Then

[zn]{v(z)} =
s∑

k=1

ξ(q)∑
p=0

v(k)
p

(
a(k) + pb(k)

n

)
(−eiϕ(k)

)n + O(n−q).

with

ξ(q) = max
k=1,...,s

[(1/b(k))(q −R(a(k))− 1)]

.
From the first part of Theorem 9 we see that in the case when generating func-
tions form a-proper, a-positive and a-irreducible system of equations, a(k) = 0 and
b(k) = 1/2. Further simplification depends on the numbers of singularities. In our
application we will only have one or two singularities. In both cases we will be sat-
isfied with error bound O(n−2). Then ξ(q) = 2. Moreover,

(
0
n

)
=

(
1
n

)
= 0 for n > 1.

Additionally, for the purpose of needed calculations we admit the singularities are
situated at the circle |z| = ρ. If there is only one singularity z0 = ρ then we have:

Lemma 11. Let v(z) be analytic in |z| < ρ with z = ρ being the only singularity at
the circle |z| = ρ. If v(z) in the vicinity of z = ρ has an expansion of the form

v(z) =
∑

p≥0

vp(1− z/ρ)
p
2 , (8)

where the branch chosen above for the expansion equals v(0) for z = 0, then

[zn]{v(z)} =
(

v1

(
1/2
n

)
(−1)n + O(n−2)

)
· ρ−n. (9)

Proof. Function v̂(z) = v(z · ρ) =
∑

p≥0 vp(1 − z)
p
2 . From the Szegö Lemma we

have:

[zn]{v̂(z)} =
(

v̂1

(
1/2
n

)
(−1)n + O(n−2)

)
(10)

From definition v(z) =
∑∞

n=0 ajz
n we have v̂(z) =

∑∞
n=0 aj(zρ)n. Hence

[zn]{v(z)} = [zn]{v̂(z)} · ρ−n. (11)
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For two singularities z = ρ and z = −ρ we have:

Lemma 12. Let v(z) be analytic in |z| < ρ with z1 = ρ and z2 = −ρ being the only
singularities at the circle |z| = ρ. If v(z) in the neighborhood of z = ρ has expansion
of the form

v(z) =
∑

p≥0

v(1)
p (1− z/ρ)

p
2 , (12)

where the branch chosen above for the expansion equals to v(0) for z = 0, and again
if v(z) in the neighborhood of z = −ρ has expansion of the form

v(z) =
∑

p≥0

v(2)
p (1 + z/ρ)

p
2 , (13)

where the branch chosen above for the expansion equals to v(0) for z = 0, then

[zn]{v(z)} =
((

v
(1)
1 + v

(2)
1 · (−1)n

)
(−1)n

(
1/2
n

)
+ O(n−2)

)
ρ−n. (14)

Proof. Analogous to the proof of Lemma 11.

For technical reasons we will need to know the rate of grow of the expression(
1/2
n

)
(−1)n which appears at formula (14).

Lemma 13. (
1/2
n

)
(−1)n+1 = O(n−3/2)

Proof. It can be obtained by the Stirling approximation formula (see [Robbins 1955]
for details, consult also lemma 7.5 page 589 at [Moczurad, Tyszkiewicz and Zaionc 2000]).

√
2πn

(n

e

)n

e
1

12n+1 < n! <
√

2πn
(n

e

)n

e
1

12n . (15)

From Lemmas 11 - 13 we obtain:

Lemma 14. Suppose function w(z) satisfies assumptions of Lemma 12 and function
v(z) satisfies assumptions of Lemma 11. Then the limit of [zn]{w(z)}

[zn]{v(z)} is given by the
formula:

lim
n→∞

[zn]{w(z)}
[zn]{v(z)} = lim

n→∞
w

(1)
1 + w

(2)
1 · (−1)n

v1

Proof. Applying the main formulas from the simplified versions of the Szegö Lemma
(Lemma 11 and Lemma 12) and the equation from Lemma 13:

lim
n→∞

[zn]{w(z)}
[zn]{v(z)} = lim

n→∞

((
w

(1)
1 + w

(2)
1 · (−1)n

)
· (−1)n

(
1/2
n

)
+ O(n−2)

)
ρ−n

(
v1

(
1/2
n

)
(−1)n + O(n−2)

)
ρ−n

= lim
n→∞

(
w

(1)
1 + w

(2)
1 · (−1)n

)
O(n−3/2) + O(n−2)

v1O(n−3/2) + O(n−2)

= lim
n→∞

w
(1)
1 + w

(2)
1 · (−1)n

v1
.
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5 Calculating generating functions
In this section we are going to determine generating functions for the classes of
all equivalential formulas, equivalential classical tautologies and equivalential intu-
itionistic tautologies. A cursory analysis of Table 2 (and Table 1 as well) give an
important information about the way of building formulas from each class. For
example, to the class A belong formulas p, (p ↔ q) ↔ q, q ↔ (p ↔ q), (q ↔ p) ↔ q,
q ↔ (q ↔ p) and so on. We see that some formula belongs to A if it is built from
even number of variable q and odd number of variable p or only from odd number
of variable p. That means the class A consists of formulas of the odd length only.
Hence we have the following power series for the generating function fA:

fA(z) = z + 8z3 + 224z5 + ... (16)

Analogously, the expansion of generating function for tautologies K is as follows:

fK(z) = 2z2 + 40z4 + 1344z6 + ... (17)

As wee see each equivalential classical tautology has even length. Because T ⊂ K
then the same holds for the class T of equivalential intuitionistic tautologies. In such
situation, counting the density µ(CLE) and µ(INTE) we will limit our interest
to the formulas of even length. But even then we have to determine the needed
generating functions fK , fT and f .
First, let us notice that the generating function f for numbers |Fn| is the one for
Catalan numbers with variable 2z:

Lemma 15.

f(z) =
1
2
−
√

1− 8z
2

(18)

Proof. Obvious.

From Table 2 we obtain the following system of equations:

(∗)





fA = 2(fAfK + fBfIII) + z
fB = 2fAfIII + z

fIII = 2(fAfB + fIIIfK)
fK = f2

A + f2
B + f2

III + f2
K

where the functions fA, fB , fIII , fK are the generating functions for the numbers
|An|, |Bn|, |IIIn|, |Kn| respectively.
The system is a-positive, a-proper and a-irreducible and is not a-aperiodic. The
last fact results for example from the expansion 17.
To determine the function fK from the above system, we simplify it significantly.
From Figure 2 we observe that

Lemma 16. The following equalities hold between the appropriate generating func-
tions:

fA = fB , (19)
fIII = fK . (20)
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Proof. The first equality follows from symmetry of diagram of the algebra AL(CLE)
presented in Figure 2. It is easy to notice that in any formula α ∈ Ai we may
exchange variables p on q and q on p and obtain the appropriate formula from Bi.
To prove the equality (20)let us observe that applying (19) to the system (∗) we
obtain:

fIII = 2(f2
A + fIIIfK), (21)

fK = 2f2
A + f2

III + f2
K . (22)

By reduction of fA we have:

fK = fIII − 2fIIIfK + f2
III + f2

K . (23)

By solving it with the boundary condition fK(0) = 0 we obtain fK = fIII .

Hence we have much simpler system of equations:

(∗∗)





fA = 4fAfK + z
fB = fA

fIII = fK

fK = 2(f2
A + f2

K)

Lemma 17. The generating function fA is the following:

fA(z) =
√

1 + 8z −√1− 8z

8
. (24)

Proof. From disjointness of classes A, B, III and K and from (19) and (20) we
obtain 2fK = f − 2fA. Applying it to the first equation from the system (∗∗), we
have:

fA(z) = (f(z)− 2fA(z))fA(z) + z (25)

After a suitable simplification we get the following quadratic equation

4f2
A + fA(1− f)− z = 0. (26)

By solving it with the boundary condition fA(0) = 0 we have fA = f−1+
√

(1−f)2+16z

8
and after replacing f with (18) we get (24).

From the equality 2fK = f − 2fA and from (24) we get:

Corollary 18. The generating function fK for the numbers |Kn| is

fK(z) =
2−√1 + 8z −√1− 8z

8
. (27)

Now, we are ready to analyze Table 1 characterizing the algebra AL(INTE). The
appropriate system of equations consists of nine equations written in terms of func-
tions fI − fV III and fT . We do not write it explicitly; it is enough to mention the
system again is a-positive, a-proper and a-irreducible and is not a-aperiodic. We
are able to solve the system by taking the advantage of the way of obtaining the
algebra AL(INTE)/K = AL(CLE):
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Observation 19. The following equalities between the appropriate generating func-
tions:

fI + fIV = fII + fV = fA, (28)
fV I + fV II + fV III + fT = fK . (29)

From Figure 1 (and the symmetry of that diagram) we have:

Observation 20. The following equalities hold between the appropriate pairs of
generating functions:

fI = fII , (30)
fIV = fV , (31)
fV I = fV II . (32)

Further analysis of Table 1 gives us:

Lemma 21. The generating function fV I for the numbers |V In| is

fV I =
1
32

(S − 2−A−B) (33)

where

A =
√

1− 8z and B =
√

1 + 8z,

S =
√

2− 2AB + 8
√

1 + A + B + AB − 12(A−B)z − 144z2.

Proof. From Table 1 we obtain the following equalities between appropriate gener-
ating functions:

fV = 2(fIfIII + fII(fV II + fV III) + fIIIfIV + fV (fV I + fT )), (34)
fV I = 2(fIfIV + fV IfT + fV IIfV III), (35)

fV III = 2(fV IfV II + fV IIIfT ). (36)

Application of (32) and (29) to (36) gives us

fV III = 2(f2
V I + fV III(fK − fV III − 2fV I)). (37)

By applying (28), (31) and (29) to (35) we get

fV I = 2((fA − fV )fV + fV I(fK − 2fV I)) (38)

and by applying (30) - (29) to (34) and from fIII = fK we get after simplification

fV = 2(fAfK + fA(fV I + fV III) + fV (fK − 2fV III − 2fV I)). (39)

Let us notice the equations (39), (38) and (37) form a system of three equations
with the unknown functions fV , fV I and fV III .
By reduction we get

fV =
fA(−1− 4fK +

√
16f2

V I + (1 + 4fV I − 2fK)2 + 2fK)
2
√

16f2
V I + (1 + 4fV I − 2fK)2

, (40)

fV III =
1
4

(
−1− 4fV I +

√
16f2

V I + (1 + 4fV I − 2fK)2 + 2fK

)
. (41)

After substitution (40) to the equation (38) we obtain a four-degree equation with
the unknown function fV I . To solve it we had to intensively use Mathematica
package and from four solutions we chose one fulfilling the boundary condition
fV I(0) = 0. After intensive simplification we get finally (33).
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From Lemma 21 and from (41) we get

Corollary 22. The generating function fV III for the numbers |V IIIn| is the fol-
lowing:

fV III =
1
32

(√
2
√

4 + A2 + 4B + B2 + 2A(2 + B) + S2

−2−A−B − S) , (42)

where

A =
√

1− 8z and B =
√

1 + 8z,

S =
√

2− 2AB + 8
√

1 + A + B + AB − 12(A−B)z − 144z2.

And finally

Corollary 23. The generating function fT for the numbers of intuitionistic tau-
tologies |Tn| is as follows:

fT =
1
32

(
14−A−B − S −

√
2
√

4 + A2 + B(4 + B) + 2A(2 + B) + S2
)
(43)

where

A =
√

1− 8z and B =
√

1 + 8z,

S =
√

2− 2AB + 8
√

1 + A + B + AB − 12(A−B)z − 144z2.

6 Counting asymptotic densities
In this section we are going to expand the considered generating functions around
their singularities. We will consider functions f , fK and fT .

Lemma 24. z1 = 1
8 is the only singularity of the function f located in |z| ≤ 1

8 .

Proof. Obvious.

Lemma 25. z1 = 1
8 and z2 = − 1

8 are the only singularities of fK and fT located
in |z| ≤ 1

8 .

Proof. It is easy to observe the function fK have two singularities z1 = 1
8 and

z2 = − 1
8 . Because fIII = fK then fIII has the same singularities as fK , only.

Because fIII appears in the system of equations corresponding with Table 1, then
from Theorem 9 we conclude that other functions from the system also have only
the two singularities. This concerns also the function fT .

Theorem 26. Expansion of function f in a neighborhood of z = 1
8 is as follows:

f(z) = f0 + f1

√
1− 8z + ...

where
f0 =

1
2
, f1 = −4

12



Proof. From Theorem 9 we conclude existence the function hj being analytic at the
origin and such that:

f(z) = hj(
√

1− 8z), (z → 1
8

−
),

By substitution t :=
√

1− 8z we obtain the analytic at t = 0 function hj(t). Then
f1 = h′j(t = 0).

Theorem 27. Expansions of function fK in neighborhoods of z = 1
8 and z = − 1

8
are as follows:

fK(z) = k
(1)
0 + k

(1)
1

√
1− 8z + ...

where
k

(1)
0 =

1
8

(
2−

√
2
)

, k
(1)
1 = −1

and

fK(z) = k
(2)
0 + k

(2)
1

√
1 + 8z + ...

where
k

(2)
0 =

1
8

(
2−

√
2
)

, k
(2)
1 = −1

Proof. Analogous to the proof of Theorem 26.

Analogously we count the appropriate coefficients of generating function fT of in-
tuitionistic tautologies.

Theorem 28. Expansions of function fT in neighborhoods of z = 1
8 and z = − 1

8
are as follows:

fT (z) = t
(1)
0 + t

(1)
1

√
1− 8z + ...

where
t
(ρ)
0 = 0.0517192..., t

(ρ)
1 = −0.4599704...

and

fT (z) = t
(2)
0 + t

(2)
1

√
1 + 8z + ...

where
t
(−ρ)
0 = 0.0517192..., t

(−ρ)
1 = −0.4599704...

Proof. The above coefficients were found using the Mathematica package.

Theorem 29. The density of truth of equivalential reducts of classical and intu-
itionistic logic does not exist.

Proof. Let us observe that the density of truth of the considered logics are given as
the following limits (see Lemma 14):

µ(CLE) = lim
n→∞

[zn]{fK(z)}
[zn]{f(z)} = lim

n→∞
−1− 1 · (−1)n

−4

µ(INTE) = lim
n→∞

[zn]{fT (z)}
[zn]{f(z)} = lim

n→∞
−0.4599704...− 0.4599704... · (−1)n

−4

It is easy to observe that the above limits do not exist.
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Let us examine the asymptotic behavior of the fractions of classical and intuitionistic
tautologies (of even length) among all formulas of even length:

lim
n→∞

[z2n]{fK(z)}
[z2n]{f(z)} = lim

n→∞
− 1

8 − 1
8 · (−1)2n

− 1
2

=
1
2

(44)

lim
n→∞

[z2n]{fT (z)}
[z2n]{f(z)} = lim

n→∞
−0.4599704...− 0.4599704... · (−1)2n

− 1
2

≈ 0.23...(45)

(46)

¤
From (44) and (46) we may conclude:

Corollary 30. The probability of finding an intuitionistic equivalential tautology of
even length among all equivalential formulas of such length is asymptotically about
23 %.

Corollary 31. The probability of finding a classical equivalential tautology of even
length among all equivalential formulas of such length is asymptotically equal to 50
%.

Corollary 32. The relative probability of finding an intuitionistic equivalential tau-
tology of even length among the classical ones is asymptotically about 46 %.

The last result is quite surprising for us. Let us remaind that in the language
with two variables but with implication the relative probability is about 97 % (see
[Kostrzycka 2003]). Analogously, in the language with implication, negation and one
variable the relative probability is about 93% (see [Kostrzycka and Zaionc 2004]).
That means the connector of equivalence is much more distinguishable between
intuitionistic and classical logics than the others well known operators.
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