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Abstract

For the given logical calculus we investigate the size of the proportion
of the number of true formulas of a certain length n against the number
of all formulas of such length. We are especially interested in asymptotic
behavior of this fraction when n tends to infinity. If the limit of fractions
exists it represents the real number between 0 and 1 which we may call
the density of truth for the investigated logic. In this paper we apply this
approach to the intuitionistic logic of one variable with implication and
negation. The result is obtained by reducing it to the same problem of
Dummett’s intermediate linear logic of one variable ( see [?]). Actually,
this paper shows the exact density of intuitionistic logic and demonstrates
that it covers a substantial part (more then 93%) of classical propositional
calculus. Despite using strictly mathematical means to solve all discussed
problems, this paper in fact, may have a philosophical impact on under-
standing how much the phenomenon of truth is sporadic or frequent in
random mathematics sentences.

1 Introduction

The research described in this paper is a part of a project of quantitative in-
vestigations in logic. This paper is their continuation; especially methods of
finding the asymptotic probability in some propositional logics are developed.

∗The second author have been supported by the State Committee for Scientific Research
(KBN ), research grant 7T11C 022 21

1



For propositional formulas we investigate the size of the fraction of valid for-
mulas of the given length n against the number of all formulas of that length.
Our interest lays in finding a limit of that fraction when n → ∞. If the limit
exists it represents number which we may call the density of truth for the in-
vestigated logic . Probabilistic methods appear to be very powerful in logic,
combinatorics and computer science. From a point of view of these methods it
is enough to investigate a typical object chosen from a given set. In particular
we are interested in finding the ”density” of classes of formulas. We investi-
gate the language F{→,¬} consisting of implicational-negational formulas over
one propositional variable. For some subclass of formulas A ⊂ F{→,¬} we may
associate the density µ(A) as:

µ(A) = lim
n→∞

#{t ∈ A : ‖t‖ = n}
#{t ∈ F{→,¬} : ‖t‖ = n} (1)

where ‖.‖ stands for the length of formula defined in the conventional way as a
number of characters. The number µ(A) if exists, is an asymptotic probability
of finding formula from the class A among all formulas from F{→,¬} and the
asymptotic density of the set A in the set F{→,¬} as well. The paper solves
the problem of density for the set of all tautologies of Dummett’s intermediate
linear logic of one variable and equivalently for intuitionistic logic.

The paper is a natural continuation of the problem concerning the density of
truth in classical logic of one variable. The result published in [?] proved the
existence of the density of truth for classical (and intuitionistic) logic of impli-
cation of one variable. In the paper [?] it is shown that the density also exists
for the implicational-negational classical formulas of one variable. In this pa-
per we prove the similar result for Dummett’s intermediate linear logic LC and
intuitionistic logic.

2 Linear Dummett’s logic

In this section we are going to study the quantitative relations in the impli-
cational - negational fragment of Dummett logic. This particular fragment of
Dummett’s logic has been chosen for two simple reasons. First of all it is a good
opportunity and possibility of interesting comparison with similar quantitative
results already proved for the classical logic of the same language (see [?]). The
second reason is that the Dummett logic reduced to implication and negation
with one propositional variable is identical with the intuitionistic logic of this
language. Therefore we can easily prove the result comparing intuitionistic and
classical logics with respect of its quantitative and asymptotic behaviors.
Linear calculus LC was studied in [?] by Dummett and it seems to be a typical
example of the intermediate propositional calculi. Syntactically the logic is
obtained by adding the axiom (p → q) ∨ (q → p) to axioms of intuitionistic
logic. The logic LC is define as a set of all consequences of new axioms by
modus ponens and substitution rules. In [?] Dummett showed that this logic

2



can be characterized by a denumerable matrix Mω described bellow in definition
??. The language of implicational - negational formulas of one propositional
variable a consists of formulas F{→,¬} built from a by means of negation and
implication only.

a ∈ F{→,¬}

φ → ψ ∈ F{→,¬} iff φ ∈ F{→,¬} and ψ ∈ F{→,¬}

¬φ ∈ F{→,¬} iff φ ∈ F{→,¬}.

Definition 1 By Dummett’s matrix we mean the infinite-valued characteristic
matrix Mω = 〈|Mω|,∼,⇒, {1}〉, where the set |Mω| = N ∪ {ω} is equipped with
two operations {∼,⇒} defined as:

∼ p =
{

ω gdy p < ω
1 gdy p = ω

p ⇒ q =
{

1 gdy p ≥ q
q gdy p < q.

Definition 2 By the valuation of our language F{→,¬} in the matrix |Mω| we
mean any function v : F{→,¬} → |Mω| satisfying v(φ → ψ) = v(φ) ⇒ v(ψ) and
v(¬φ) =∼ v(φ). A formula α is a tautology iff v(α) = 1 for every valuation
v : F{→,¬} → |Mω|. By E(Mω) we mean the set of all tautologies in LC.
Since we have formulas built with exactly one propositional variable a we can
enumerate valuations by the elements of |Mω| as follows

vi(a) = i for all i ∈ |Mω|. (2)

Definition 3 By the sequence of valuations α we mean any function α : |Mω| →
|Mω|. Sequences of valuations are ordered componentwise by α ≤ β iff for all
i ∈ |Mω| α(i) ≤ β(i) and form a poset. On sequences we may introduce
operations {∼,⇒} also componentwise allowing that : α ⇒ β is a new sequence
of valuations such that (α ⇒ β)(i) = α(i) ⇒ β(i) and ∼ α is a sequence defined
(∼ α)(i) =∼ α(i).

We partition the set of all formulas into several classes according to formulas
behavior on all possible evaluations.

Definition 4 Each sequence of valuations α defines uniquely the set of formulas
Fα ⊂ F{→,¬} which are undistinguishable by all valuations.

Fα =
{

φ ∈ F{→,¬} : ∀i ∈ |Mω| vi(φ) = α(i)
}

. (3)

For example, the initial formula a belongs to the class Fα for the sequence
α(i) = i, ∀i ∈ |Mω|, while the formula ¬a → a lays in the class Fα for
the sequence α(i) = 1, ∀i ∈ N and α(ω) = ω. It is obvious that classes are
disjoint so Fα ∩F β = ∅ for α 6== β and

⋃
α Fα = F{→,¬}. Some sequences has

no realization among formulas or there is no formula which behaves the way
described by sequence.
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Definition 5 The sequence α is called nonempty if the set of formulas Fα 6= ∅.
Our first task is to separate all nonempty sequences of valuations. We can easily
see that the class Fα for the sequence α(i) = i, ∀i ∈ |Mω| is nonempty since
our initial formula a lays in Fα.

Definition 6 Closing the set of nonempty sequences of valuations by operations
{∼,⇒} we isolate exactly six sequences. Bellow we make a list of all six classes
together with appropriate sequences. In order to simplify notations we are going
to call classes A,B, C, D, E,G:

A = FαA αA(i) = ω,
B = FαB αB(i) = i,
C = FαC αC(i) = ω for = i < ω and αC(ω) = 1,
D = FαD αD(i) = i for i < ω and αD(ω) = 1,
E = FαE αE(i) = 1 for i < ω and αE(ω) = ω,
G = FαG αG(i) = 1.

As we can see the class G establishes the set E(Mω) of all tautologies in LC.

Lemma 7 (Dummett [?]) Let ≡ be an equivalence relation over F{→,¬} such
that: φ ≡ ψ iff φ → ψ and ψ → φ are provable in the linear logic LC . The
relation ≡ is a congruence relation on F{→,¬}. The quotient algebra F{→,¬}/≡
consists of following six congruence classes:

A = [¬(p → p)]≡,

B = [p]≡,

C = [¬p]≡,

D = [(¬p → p) → p]≡,

E = [¬p → p]≡,

G = [p → p]≡.

Proof. The proof is a trivial consequence of the Dummett completeness theorem
(see [?]). Representatives of congruence classes chosen in the table above are
the shortest with respect of length of formula which is defined in the definition
?? in the section ??. ¤
Definition 8 Semantic operations {∼,⇒} on these classes defined by Fα ⇒
F β = Fα⇒β and ∼ Fα = F∼α can be displayed by the following truth table:

⇒ A B C D E G ∼
A G G G G G G G
B C G C G G G C
C E E G G E G E
D A E C G E G A
E C D C D G G C
G A B C D E G A

Table 1.
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Definition 9 The order on classes Fα is defined as Fα ≤ Fα′ iff α ≥ α′. It
forms the following lattice diagram with the class of tautologies G being on the
top:
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Diagram 1.

For technical reasons we are also going to consider two posets obtained from
the one above by appropriate identification.

Definition 10 Let us define three elements chain obtained from the poset above
by the identification of classes E and G, B and D as well as classes A and C.
We will name such classes as EG = E ∪G, BD = B ∪D and AC = A∪C. Let
us define also four elements Boolean algebra, obtained from the poset above by
identifying classes D and G, and B and E. Accordingly we will call such classes
DG = D ∪G and BE = B ∪ E. They have following diagrams:
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Diagram 2 Diagram 3

Observation 11 The operations {∼,⇒} on new classes in new posets are given
by the following truth tables:

⇒ AC BD EG ∼
AC EG EG EG EG
BD AC EG EG AC
EG AC BD EG AC

⇒ A C BE DG ∼
A DG DG DG DG DG
C BE DG BE DG BE

BE C C DG DG C
DG A C BE DG A

Table 2. Table 3.

As we can observe the first truth table describes operations in Gödel 3 valued
matrix, while the second one is a matrix of all valuations associated with the
standard classical logic of one variable.
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Lemma 12 The matrix described in Table 3 is a matrix for the classical propo-
sitional logic of implication and negation with one variable.

Proof. We start the proof by splitting the set of all formulas into four classes
according to behavior of formulas on two possible evaluations. Since we have
formulas built with exactly one propositional variable a we can evaluate formulas
by two valuations: ν0 associating 0 to a and ν1 associating 1 to a. For any
i, j ∈ {0, 1} by F i,j we mean the set of formulas φ from F{→,¬} such that
ν0(φ) = i and ν1(φ) = j. The four classes F i,j are ordered by assuming that
F i,j ≤ F i′,j′ iff i ≤ i′ and j ≤ j′. On our four classes F i,j we can establish
operation of implication ⇒ by F i,j ⇒ F i′,j′ = F i→i′,j→j′ where → stands for
the classical implication defined on the set {0, 1}. In the same way we define
the operation of negation by ∼ F i,j = F¬i,¬j . By the construction above we
get the four element Boolean algebra, exactly the same as we can see in the
diagram 3 with the identical truth table as described in Table 3. The classes
are following:

A = F 0,0,
BE = F 0,1,

C = F 1,0,
DG = F 1,1.

and the truth table is identical with the one defined by operations {⇒,∼} de-
scribed above. Therefore the results concerning asymptotic probabilities associ-
ated with any of four classes are identical with those for classical propositional
logic. This result has been studied in [?]. Especially theorem 5.4 in [?] shows
what exactly is the asymptotic density of the class DG. ¤

3 Counting Formulas

In this section we present some properties of numbers characterizing the amount
of formulas in different classes defined in our language. First, let us establish
the way of measuring the length of formulas.

Definition 13 By ‖φ‖ we mean the length of the formula φ, which is the total
number of characters in the formula, including implication and negation signs.
Parentheses, which are sometimes necessary, are not included in the length of
formula. Formally

‖a‖ = 1,

‖φ → ψ‖ = ‖φ‖+ ‖ψ‖+ 1,

‖¬φ‖ = ‖φ‖+ 1.

Definition 14 By F{→,¬}
n we mean the set of formulas of length n − 1. Sub-

classes An, Bn, Cn, Dn, En, Gn and additional subclasses EGn, BDn, ACn, DGn,
BEn of formulas of length n− 1 are defined accordingly by:
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An = F{→,¬}
n ∩A, Bn = F{→,¬}

n ∩B,

Cn = F{→,¬}
n ∩ C, Dn = F{→,¬}

n ∩D,

En = F{→,¬}
n ∩ E, Gn = F{→,¬}

n ∩G,

EGn = F{→,¬}
n ∩ EG, BDn = F{→,¬}

n ∩BD,

ACn = F{→,¬}
n ∩AC, DGn = F{→,¬}

n ∩DG,

BEn = F{→,¬}
n ∩BE.

We can see that for any n ∈ N the number of formulas in F{→,¬}
n is finite and

will be denoted as
∣∣∣F{→,¬}

n

∣∣∣ . Consequently all subclasses listed above are also
finite for all y n ∈ N.

4 Generating functions

The main tool we use for dealing with asymptotics of sequences of numbers are
generating functions. A nice exposition of the method can be found in [?] and
[?]. Our main task in this paper is to determine limits of various sequences
of real numbers. For this purpose combinatorics has developed an extremely
powerful tool, in the form of generating series and generating functions. Let A =
(A0, A1, A2, . . .) be a sequence of real numbers. The ordinary generating series
for A is the formal power series

∑∞
n=0 Anzn. And, of course, formal power series

are in one-to-one correspondence to sequences. However, considering z as a
complex variable, this series, as it is known from the theory of analytic functions,
converges uniformly to a function fA(z) in some open disc {z ∈ C : |z| < R}
of maximal diameter, and R ≥ 0 is called its radius of convergence. So with
the sequence A we can associate a complex function fA(z), called the ordinary
generating function for A, defined in a neighborhood of 0. This correspondence
is one-to-one again (unless R = 0), since the expansion of a complex function
f(z), analytic in a neighborhood of z0, into a power series

∑∞
n=0 An(z − z0)n is

unique, and moreover, this series is the Taylor series, given by

An =
1
n!

dnf

dzn
(z0). (4)

Many questions concerning the asymptotic behavior of A can be efficiently re-
solved by analyzing the behavior of fA at the complex circle |z| = R.
This is the approach we take to determine the asymptotic fraction of tautologies
and many other classes of formulas among all formulas of a given length.
The key tool will be the following result due to Szegö [?] [Thm. 8.4], see as well
[?] [Thm. 5.3.2] which relates the generating functions of numerical sequences
with limit of the fractions investigated. For the technique of proof described
below please consult also [?] as well as [?]. We need the following much simpler
version of the Szegö Lemma.
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Lemma 15 Let v(z) be analytic in |z| < 1 with z = 1 the only singularity at
the circle |z| = 1. If v(z) in the vicinity of z = 1 has an expansion of the form

v(z) =
∑

p≥0

vp(1− z)
p
2 , (5)

where p > 0, and the branch chosen above for the expansion equals to v(0) for
z = 0, then

[zn]{v(z)} = v1

(
1/2
n

)
(−1)n + O(n−2). (6)

The symbol [zn]{v(z)} stands for the coefficient of zn in the exponential series
expansion of v(z).

For technical reasons we will need to know the rate of grow of the function(
1/2
n

)
(−1)n which appears at the formula (??)

Lemma 16
(

1/2
n

)
(−1)n+1 = O(n−3/2)

Proof. . It can be obtained by the Stirling approximation formula (see [?] for
details, consult also lemma 7.5 page 589 at [?]).

√
2πn

(n

e

)n

e
1

12n+1 < n! <
√

2πn
(n

e

)n

e
1

12n . (7)

¤

5 Calculation of limits

In this section we are going to find the method of finding asymptotic densities for
the classes of formulas for which the generating functions are already calculated.
The main tool used for this purpose is theorem based on simplified Szegö lemma.
The following theorem is a main tool for finding limits of the fraction an

bn
when

generating functions for sequences an and bn satisfies conditions of simplified
Szegö lemma ??.

Lemma 17 Suppose two functions v(z) and w(z) satisfies assumptions of sim-
plified Szegö theorem (lemma ??) i.e. both v and w are analytic in |z| < 1 with
z = 1 being the only singularity at the circle |z| = 1. Both v(z) and w(z) in the
vicinity of z = 1 have expansions of the form

v(z) =
∑

p≥0

vp(1− z)p/2, (8)

w(z) =
∑

p≥0

wp(1− z)p/2, (9)
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then the limit of [zn]{v(z)}
[zn]{w(z)} exists and is given by formula:

lim
n→∞

[zn]{v(z)}
[zn]{w(z)} =

v1

w1
(10)

Proof. Applying the main formula from simplified version of Szegö lemma ??
and equation from lemma ??

lim
n→∞

[zn]{v(z)}
[zn]{w(z)} = lim

n→∞

v1

(
1/2
n

)
(−1)n + O(n−2)

w1

(
1/2
n

)
(−1)n + O(n−2)

= lim
n→∞

v1O(n−3/2) + O(n−2)
w1O(n−3/2) + O(n−2)

=
v1

w1

¤

Theorem 18 Suppose two functions v(z) and w(z) satisfies assumptions of
simplified Szegö theorem (lemma ??) i.e. both v and w are analytic in |z| < 1
with z = 1 being the only singularity at the circle |z| = 1. Both v(z) and w(z)
in the vicinity of z = 1 have expansions of the form

v(z) =
∑

p≥0

vp(1− z)p/2, (11)

w(z) =
∑

p≥0

wp(1− z)p/2, (12)

Suppose we have functions ṽ and w̃ satisfying ṽ(
√

1− z) = v(z) and w̃(
√

1− z) =
w(z) then the limit of [zn]{v(z)}

[zn]{w(z)} exists and is given by formula:

lim
n→∞

[zn]{v(z)}
[zn]{w(z)} =

(ṽ)′(0)
(w̃)′(0)

(13)

Proof. Simple consequence of lemma ??. New functions ṽ and w̃ have expan-
sions

ṽ(z) =
∑

p≥0

vpz
p, (14)

w̃(z) =
∑

p≥0

wpz
p, (15)

Therefore v1 = (ṽ)′(0) and w1 = (w̃)′(0). By lemma ?? the result (??) is
obvious.

¤
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6 Calculating generating functions

The main goal of this section is to find the generating function for the class of
tautologies G meaning that we build the function for the sequence of numbers
|Gn| and contrast it with the generating function of the class of all formulas∣∣∣F{→,¬}

n

∣∣∣. First, recall the following two generating functions calculated in [?]

for sequences
∣∣∣F{→,¬}

n

∣∣∣ and |DGn|. We start by calculating generating functions
we will need.

Definition 19 The number Fn is given by the recursion:

F0 = 0, F1 = 0, F2 = 1, (16)

Fn = Fn−1 +
n−1∑

i=1

FiFn−i. (17)

Lemma 20 The number of formulas of length n− 1 is Fn. So Fn =
∣∣∣F{→,¬}

n

∣∣∣.

Proof. Any formula of length n−1 for n > 2 is either a negation of some formula
of length n− 2 for which responsible is the fragment Fn−1, or is the implication
between some pair of formulas of lengths i− 1 and n− i− 1, respectively. The
length of any of such implicational formulas must be (i−1)+(n−i−1)+1 which
is exactly n− 1. Therefore the total number of such formulas is

∑n−1
i=1 FiFn−i.

¤

Lemma 21 The generating function fF for the numbers Fn is

fF (z) =
1− z

2
−

√
(z + 1)(1− 3z)

2
. (18)

Proof. The recurrence Fn = Fn−1 +
∑n−2

i=1 FiFn−i becomes the equality

fF (z) = zfF (z) + f2
F (z) + z2 (19)

since the recursion fragment
∑n−2

i=1 FiFn−i exactly corresponds to the multipli-
cation of power series. The term Fn−1 corresponds to the function zfF (z). The
quadratic term z2 corresponds to the first non-zero coefficient in the power
series of fF . Solving the equation we get two possible solutions: fF (z) =
(1−z)/2−√−3z2 − 2z + 1/2 or fF (z) = (1−z)/2+

√−3z2 − 2z + 1/2. We have
to choose the first solution, since it corresponds to the assumption fF (0) = 0
(see equation (??)). ¤
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Lemma 22 (Zaionc [?]) The generating function fDG for the sequence of num-
bers |DGn| is:

fDG(z) =
1
24

(
24−

√
2Z −

√
2T − 2

√
9− 90z + 27z2 + Y + ZT

)
, (20)

where
X =

√
(3z + 3)(1− 3z),

Y =
√

3(3z − 3)X,

Z =
√

9 + 54z − 9z2 + Y ,

T =
√

9 + 54z + 63z2 + Y .

Proof. Calculation of the function together with the asymptotic density of the
class of classical implicational-negational tautologies can be found in [?].

The following part of this chapter is dedicated to the problem of construction
of generating functions for classes from the Gödel 3 valued matrix. Let us start
with the proof of correctness of the mutual recurrence relations between three
classes |ACn|, |BDn| and |EGn|.

Lemma 23 The numbers |ACn|, |BDn| and |EGn| are given by the following
mutual recursions:

|AC0| = |AC1| = |AC2| = 0, |AC3| = 1,

|ACn| = |BDn−1|+ |EGn−1|+
n−2∑

i=1

(|BDi|+ |EGi|)|ACn−i|, (21)

|BD0| = |BD1| = 0, |BD2| = 1,

|BDn| =
n−2∑

i=1

|EGi||BDn−i|, (22)

|EG0| = |EG1| = |EG2| = |EG3| = 0, |EG4| = 2,

|EGn| = |Fn| − (|ACn|+ |BDn|). (23)

Proof. It follows easily from Table 2. Formulas from class AC described in by
formula (??), can be obtain as negations of these from classes BD and EG. This
part is responsible for the component |BDn−1|+ |EGn−1|. Analyzing table 2 we
also can notice that the number of formulas from AC in the form of implications
depends only on the same classes BD and EG and these from AC. This fact
is described in the fragment

∑n−2
i=1 (|BDi|+ |EGi|)|ACn−i|. So, we have proved

(??). The formulas in the class BD can only be implications of formulas from
classes EG and BD. This gives (??). The last equation (?? ) is obvious. ¤

Lemma 24 The generating function fBD for sequence of numbers |BDn| is:
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fBD(z) =
1
24

(
3z − 3−

√
3 X −

√
2 U + (24)

√
12 (3 + 6z + 45z2)− 2

√
2 (3z − 3) U − 4Y + 2

√
6XU

)
,

where
X =

√
(3z + 3)(1− 3z),

Y =
√

3(3z − 3)X,

U =
√

9 + 54z − 9z2 − Y .

Proof. First, we can observe that the generating functions fAC , fBD i fEG

for sequences |ACn|, |BDn| and |EGn| satisfies the following equalities

fAC = (fBD + fEG)z + (fBD + fEG)fAC , (25)
fBD = fEG · fBD + z2, (26)
fEG = fF − (fAC + fBD). (27)

The recurrence (??) corresponds to multiplication of power series and then
gives the equality (??). The quadratic term z2 in (??) corresponds to the
first non-zero coefficient in the power series of fBD. In the same manner we
can see that the fragment

∑n−2
i=1 (|BDi| + |EGi|)|ACn−i| corresponds to the

multiplication (fBD +fEG)fAC , while the term |BDn−1|+ |EGn−1| corresponds
to the function (fBD + fEG)z. Solving this system of multi quadratic equations
(??), (??) and (??) we obtain four solutions for fBD. Note, that we choose the
solution satisfying the boundary conditions fBD(0) = 0 and f ′BD(0) = 0 which
is presented in (??). ¤

Now, we are ready to attack the problem of finding the generating function for
the class of tautologies G. The simplest way is to choose first the class B since
it occurs only once in the table 1 as a result of implication between classes G
and B again.

Lemma 25 The generating function for the sequence |Bn| is

fB =
1
2
(1− fDG + fBD −

√
(fDG − fBD − 1)2 − 4z2). (28)

Proof. We start the proof with analyzing the main truth table 1. This suggests
the recursion schema for this class which must be:

|B0| = |B1| = 0, |B2| = 1,

|Bn| =
n−2∑

i=1

|Gi||Bn−i|. (29)
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This can be translated into equation:

fB = fGfB + z2. (30)

Just from the disjointness of classes we get

fG + fD = fDG, (31)
fD + fB = fBD. (32)

Therefore the generating function for the class of tautologies G can be presented
in terms of already known generating functions fDG and fBD as follows:

fG = fDG − fBD + fB . (33)

Therefore from (??) and (??) we get a quadratic equation with unknown func-
tion fB , namely:

fB = (fDG − fBD + fB)fB + z2. (34)

By solving (??) with the boundary condition fB(0) = 0 we get function fB

which is presented here in terms of already known functions fDG and fBD ( see
(??) and (??)) . ¤

Lemma 26 Generating function for the sequence of tautologies |Gn| is:

fG =
1
2
(fDG − fBD + 1−

√
(fDG − fBD − 1)2 − 4z2). (35)

Proof. Trivially follows from (??) and (??). For simplicity, we can present it
again in terms of functions already known: fDG and fBD. ¤

7 From generating functions to asymptotic den-
sities

Definition 27 In order to apply simplified Szegö lemma we have to have func-
tions which are analytic in the open disc |z| < 1, and the nearest singularity is
at z0 = 1. For that purpose we are going to calibrate functions fF and fG in
the following way

f̂F (z) = fF

(
z
3

)
, f̂DG(z) = fDG

(
z
3

)
,

f̂BD(z) = fBD

(
z
3

)
, f̂G(z) = fG

(
z
3

)
.

After appropriate simplification of that expressions we get
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X̂ =
√

(z + 3)(1− z),

Ŷ =
√

3(z − 3)X̂,

Ẑ =
√

9 + 18z − z2 + Ŷ ,

T̂ =
√

9 + 18z + 7z2 + Ŷ ,

Û =
√

9 + 18z − z2 − Ŷ ,

f̂F (z) =
1
6

(
3− z −

√
3
√

(z + 3)(1− z)
)

, (36)

f̂DG(z) =
1
24

(
24−

√
2Ẑ −

√
2T̂ − 2

√
9− 30z + 3z2 + Ŷ + ẐT̂

)
, (37)

f̂BD(z) =
1
24

(
z − 3−

√
3 X̂ −

√
2 Û + (38)

√
12 (3 + 2z + 5z2)− 2

√
2 (z − 3) Û − 4Ŷ + 2

√
6X̂Û

)
, (39)

f̂G(z) =
1
2
(f̂DG(z)− f̂BD(z) + 1−

√
(f̂DG(z)− f̂BD(z)− 1)2 − 4

9
z2).

Note that the relations between power series of appropriate functions are such
as [zn]{f(z)} =

(
[zn]{f̂(z)}

)
3n.

Lemma 28 z0 = 1 is the only singularity of f̂F and f̂G located in |z| ≤ 1.

Proof. It is easy to observe the function f̂F (z) has the only singularities at z = 1
and z = −3. To make sure the function f̂G(z) has the nearest one in z = 1, we
had to solve the following complicated equations:

9 + 18z − z2 + Ŷ = 0 (40)

9 + 18z + 7z2 + Ŷ = 0 (41)

9 + 18z − z2 − Ŷ = 0 (42)

9− 30z + z2 + Ŷ +
√

9 + 18z − z2 + Ŷ

√
9 + 18z + 7z2 + Ŷ = 0 (43)

12
(
3 + 2z + 5z2

)− 2
√

2 (z − 3) Û − 4Ŷ + 2
√

6X̂Û = 0 (44)

(f̂DG(z)− f̂BD(z)− 1)2 − 4
9
z2 = 0 (45)

where X̂, Ŷ , Û , f̂BD and f̂DG are functions defined above in the definition (??)
To do that we had extensively used Mathematica package and it occurred that all
solutions which are different from z = 1 are situated outside the disc |z| ≤ 1. ¤
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Since functions f̂F and f̂G satisfies assumptions of simplified Szegö lemma ( ??)
i.e. both f̂F and f̂G are analytic in |z| < 1 with z = 1 being the only singularity
at the circle |z| = 1 we can utilize theorem ??. Therefore we need to find
functions f̃F and f̃G satisfying f̃F (

√
1− z) = f̂F (z) and f̃G(

√
1− z) = f̂G(z).

Additionally we will need also functions f̃DG, f̃BD as well as supplementary
functions X̃, Ỹ , Ũ , Z̃ and T̃ . Functions X̃, Ỹ ,Ũ , Z̃ and T̃ are not having
any specific combinatorial interpretation but are used only for the purpose of
simplifying expressions for more complicated functions including f̃G. Let we
define tilded functions as follows:

Definition 29

X̃(z) = z
√

4− z2, (46)

Ỹ (z) = −
√

3(z2 + 2)X̃(z), (47)

Z̃(z) =
√

26− 16z2 − z4 + Ỹ (z), (48)

T̃ (z) =
√

34− 32z2 + 7z4 + Ỹ (z), (49)

Ũ(z) =
√

26− 16z2 − z4 − Ỹ (z), (50)

f̃F (z) =
1
6

(
2 + z2 −

√
3z

√
4− z2

)
, (51)

f̃DG(z) =
1
24

(
24−

√
2Z̃ −

√
2T̃ − 2

√
−18 + 24z2 + 3z4 + Ỹ + Z̃T̃

)
,(52)

f̃BD(z) =
1
24

(
−z2 − 2−

√
3X̃ −

√
2Ũ+ (53)

√
2
√

6(10− 12z2 + 5z4)− 2Ỹ +
√

2
(
2 + z2 +

√
3X̃

)
Ũ

)
,

f̃G(z) =
1
2
(f̃DG(z)− f̃BD(z) + 1−

√
(f̃DG(z)− f̃BD(z)− 1)2 − 4

9
(1− z2)2). (54)

Lemma 30 New tilded functions introduced in definition ?? are such that:

f̃DG(
√

1− z) = f̂DG(z),

f̃BD(
√

1− z) = f̂BD(z),

f̃F (
√

1− z) = f̂F (z),

f̃G(
√

1− z) = f̂G(z)

Proof. Trivially follows from the definition of functions. It can be seen if we
replace expression

√
1− z everywhere in functions in the definition ?? by the

new fresh variable t. And at the same time replace z by 1− t2.
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Theorem 31 [Main limit theorem] The density the class of tautologies in the
Dummett’s logic exists and is given by the following expression:

µ(G) = lim
n→∞

|Gn|
|F{→,¬}

n |
=

(f̃G)′(0)

(f̃F )′(0)
≈ 0.395205 .

Proof. Suppose g1 and f1 are first terms of the expansions of functions f̂g(z) =∑
p≥0 gp(1 − z)p/2 and f̂F (z) =

∑
p≥0 fp(1− z)p/2 in the vicinity of z = 1, the

only singularity of both functions at the circle ‖z‖ = 1. Putting together lemma
??, theorem ?? and results in lemma ?? we get:

lim
n→∞

|Gn|
|F{→,¬}

n |
= lim

n→∞
(g1

(
1/2
n

)
(−1)n + O(n−2))3n

(f1

(
1/2
n

)
(−1)n + O(n−2))3n

= lim
n→∞

g1

f1
(1 + o(1)) =

g1

f1
=

(f̃G)′(0)

(f̃F )′(0)
.

The derivatives (f̃G)′(0) and (f̃F )′(0) have been found analytically using Math-

ematica package. Numerically the value (f̃G)′(0)
(f̃F )′(0)

is about 0.395205... The exact

value of (f̃G)′(0)
(f̃F )′(0)

is:

1
2
√

3


f̃ ′BD(0)− f̃ ′DG(0) +

(
1 + f̃BD(0)− f̃DG(0)

)(
f̃ ′BD(0)− f̃ ′DG(0)

)
√(

f̃DG(0)− f̃BD(0)− 1
)2

− 4
9


 ,

(55)

where values of functions at 0 and derivatives at 0 are computed separately and

f̃BD(0) =
1
24

(√
120 + 8

√
13− 2

√
13− 2

)
, (56)

f̃ ′BD(0) =
7

2
√

78
(
15 +

√
13

) +
1√

360 + 24
√

13
− 13 +

√
13

52
√

3
, (57)

f̃DG(0) =
1
24

(
24− 2

√
13− 2

√
17− 2

√
2
√

221− 18
)

, (58)

f̃ ′DG(0) = −1
2

√√√√1593 + 107
√

221 +
√

70
(
39737 + 2673

√
221

)

23205
. (59)
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The density distribution for the Dummett logic is displayed on the following
diagram. Calculation of this density for other classes have been done in the
very same way as for the class of tautologies G.
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@

@@
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¡
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p
18.42% E

D 4.70%

C 19.80%
3.12% B

16.32% A

G 39.53%

Diagram 4.

Surprisingly the most frequent (39.53%) type of formulas are tautologies. The
most infrequent type of formulas (only 3.12%) are those equivalent with the
atomic formula a (see definition ??).

8 Intuitionistic logic of one variable

In this section we show the implicational-negational part of Dummett’s linear
logic with one propositional variable is identical with the intuitionistic logic
of this language. To do this, first we characterize the intuitionistic logic of
one variable a with three standard connectives: implication, disjunction and
negation. We enumerate some formulas in this language in the following way:

F 0 = ¬(a → a) (60)
F 1 = a (61)
F 2 = ¬a (62)
F 2n+1 = F 2n ∨ F 2n−1 (63)
F 2n+2 = F 2n → F 2n−1 (64)
for n ≥ 1

In the set of all formulas we can introduce an equivalence relation ≡ in a common
way:

Definition 32 ϕ ≡ ψ if both ϕ → ψ and ψ → ϕ are intuitionistic theorems.

Every formula from our language F{→,¬} falls in to one of the equivalence classes
[Fm]≡. Therefore up to this equivalence relation on the classes of formulas
[Fm]≡ give rise to the so-called Rieger - Nishimura lattice R which is the single-
generated free Heyting algebra (see diagram 5).
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[F 12]≡ [F 11]≡

[F 10]≡

[F 13]≡

pp
p
p[Fω]≡

Diagram 5.

Next, we consider an implicational-negational reduct R{→,¬} of algebra R.

Lemma 33 The implicational-negational reduct R{→,¬} consists of six nonempty
classes:

[F 0]≡ = [¬(a → a)]≡, (65)
[F 1]≡ = [a]≡, (66)
[F 2]≡ = [¬a]≡, (67)
[F 4]≡ = [¬a → a]≡, (68)
[F 6]≡ = [(¬a → a) → a]≡, (69)
[Fω]≡ = [a → a]≡. (70)
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Proof. The formulas from class [F 3]≡ can be obtained as a disjunctions of
formulas from classes [F 1]≡ and [F 2]≡ only. Similarly the formulas from classes
[F 5]≡, [F 7]≡ and [F 2n+1]≡ for all n ≥ 4. Hence, in implicational-negational
reduct R{→,¬} the classes [F 2n+1]≡ for all n ≥ 1, are empty. The emptiness
of these classes involves the emptiness of following ones: [F 8]≡, [F 10]≡ and
[F 2n]≡ for all n ≥ 6, as they are obtained as implications of empty classes
also. The class [F 6]≡ is nonempty because it contains the formulas which may
be obtained as implication of formulas from classes [F 4]≡ and [F 1]≡ as well.
Therefore [F 6]≡ = [(¬a → a) → a]≡. The class [Fω]≡ = [a → a]≡ is nonempty
as it contains all tautologies. ¤

Lemma 34 The implicational-negational part of intuitionistic logic of one vari-
able is identical with the appropriate part of linear logic.

Proof. It is easy to notice that both the diagrams of implicational-negational
reduct R{→,¬} and the Diagram 1 of linear logic of the same language are
identical and the following equalities hold:

[F 0]≡ = A, (71)
[F 1]≡ = B, (72)
[F 2]≡ = C, (73)
[F 4]≡ = E, (74)
[F 6]≡ = D, (75)
[Fω]≡ = G. (76)

The representatives of appropriate classes are the same and moreover others
formulas from these classes stand up in the same way. So, if we make the truth
table for classes [F 0]≡, [F 1]≡, [F 2]≡, [F 4]≡, [F 6 =]≡, [Fω]≡ from R{→,¬}

with {⇒,∼} it will be the same as Table 1. Hence, the generating functions
for appropriate classes are the same also; especially, the generating functions
for classes of tautologies G and Fω. It means the numbers of tautologies of the
lenght n both the implicational-negational parts of linear logic of one variable
and the intuitionistic one of the same language are equal. Because in general the
intuitionistic logic is weaker than the linear one, we conclude that the considered
parts of these logic are identical. ¤

9 Size of intuitionistic logic inside classical

As we know the intuitionistic logic is a proper subset of the classical one. Finally,
the result above can be employ to calculate how big is the size of the fragment of
intuitionistic logic inside classical logic. The density of implicational-negational
part of classical logic of one variable has been calculated in the paper [?]. It
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has been shown that classical logic of this language admits the limit property
ie. there exists a limit of proportions between the number of true formulas and
all formulas of the given length. The result has been calculated analytically but
numerically it is about 0.4232 . So, the probability of finding a intuitionistic
tautology among classical ones is described by the following theorem. We can see
that intuitionistic logic is really a dense fragment of classical ones. It is highly
probable (probability higher then 93% ) to find formulas from intuitionistic logic
among random classical tautologies.

Theorem 35 [Relative density] The relative density of intuitionistic tautologies
among classical ones is more then 93 %.

Proof. Class DG in Diagram 3 is in fact the class of classical tautologies (see
[?]). We already know asymptotical behavior of classical and intuitionistic logics
described by limn→∞

|Gn|
|F{→,¬}

n | and limn→∞
|DGn|
|F{→,¬}

n | therefore

lim
n→∞

|Gn|
|DGn| =

limn→∞
|Gn|

|F{→,¬}
n |

limn→∞
|DGn|
|F{→,¬}

n |
=

0.395305 . . .

0.44232 . . .
≈ 93%
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