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Abstract

In this paper we examine normal extensions of Grzegorczyk’s logic over
language with one propositional variable and signs of {→, ¤} only.

1 Grzegorczyk’s logic and its normal extensions
Syntactically, Grzegorczyk’s logic Grz is characterized as a normal extension of
S4 modal calculus by the axiom

(grz) ¤(¤(p→ ¤p) → p) → p

The set of rules consists of modus ponens, substitution and necessitation.
Semantically, Grz logic is characterized by the class of finite reflexive and tran-
sitive trees. Recall, that by a tree we mean a rooted frame F =< W,R > such
that for every point x ∈W , the set x ↓ is finite and linearly ordered by R.
In this section we examine normal extensions of Grzegorczyk’s logic obtained by
adding to the set of axioms new formulas. The axiomatic extensions are uniformly
connected with a depth of a tree.

Definition 1. A frame F is of depth n < ω if there is a chain of n points in F

and no chain of more than n points exists in F.

For n > 0, let Jn be an axiom saying that any strictly ascending partial-ordered se-
quence of points is of length n at most, i.e., that there exist no points x1, x2, ..., xn

such that xn+1 is accessible from xi for i = 1, 2, ..., n.
The formulas Jn are well known (see [1] pp.42) and are defined inductively as
follows:

Definition 2.

J1 = ♦¤p1 → p1,

Jn+1 = ♦(¤pn+1∧ ∼ Jn) → pn+1.
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We will consider the logics Grz≤n = Grz⊕ Jn. They contain the logic Grz and
the following inclusions hold:

Grz ⊂ ... ⊂ Grz≤n ⊂ Grz≤n−1 ⊂ ... ⊂ Grz≤2 ⊂ Grz≤1 (1)

2 Implicational-necessitional reducts of extensions
of Grzegorczyk’s logic

The main goal of this paper is to investigate the implicational-necessitional reduct
of Grzegorczyk’s logic with one variable. The language F{→,¤} consisted of sings
of implication and necessity and one propositional variable p only is defined as
follow:

Definition 3.

p ∈ F{→,¤}

α→ β ∈ F{→,¤} iff α ∈ F{→,¤} and β ∈ F{→,¤}

¤α ∈ F{→,¤} iff α ∈ F{→,¤}.

From now on, the whole investigation will concern implicational-necessitional
reducts of logics Grz and Grz≤n. We do not introduce new symbols for them.
The simplest manner to characterize the logics Grz≤n is examining the appro-
priate Tarski-Lindenbaum algebras Grz≤n/≡. Let us introduce an equivalence
relation on algebras Grz≤n:

Definition 4. α ≡ β iff α→ β ∈ Grz≤n and β → α ∈ Grz≤n for n = 1, 2, ..., n.

Lemma 5. For any algebra Grz≤n/≡ the following orders hold:

[¤p]≡ ≤ [α]≡ for any α ∈ F{→,¤}, (2)
[α]≡ ≤ [p→ p]≡ for any α ∈ F{→,¤}, (3)

where ≤ is defined in the conventional way.

Proof. The proof of (3) is obvious. (2) follows from reflexivity of appropriate tree
and restriction to the formulas from F{→,¤}. If the formula ¤p is true at some
point x of some tree it involves being true for p at every point xi ∈ x ↑ and hence
all formulas as well. ¤
We see the class [¤p]≡ behaves as 0 of the algebra Grz≤n/≡, whereas [p → p]≡
as 1.
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Lemma 6. Every algebra (Grz≤n/≡,1,→) is an implication algebra including
0 = [¤p]≡.

Proof. The implication → is just classical one. For details see [2]. ¤
It is well known (see again [2]) that every implication algebra with the zero
element might be extended to a Boolean algebra by introducing new operations
∨,∼,∧ defined in the conventional way. Hence we have:

Corollary 7. Every algebra (Grz≤n/≡,1,→,∨,∧,∼) is a Boolean algebra.

It is also obvious that:

Lemma 8. Every algebra (Grz≤n/≡,1,→,∨,∧,∼,¤) is a modal algebra.

3 Reduction of models
The main task of this section is to characterize the quotient algebras Grz≤n/≡.
The crucial point in this attempt will be a theorem allowing reduction of finite
reflexive and transitive tree to the linear ordered frame consisting of n points.
First, we recall some definitions of the needed notions and some theorems as well
(for details see [1] or [3]).
The length of formula is defined in the conventional way:

Definition 9.

l(p) = 1

l(¤φ) = 1 + l(φ)

l(φ→ ψ) = l(φ) + l(ψ) + 1

Definition 10. A point x in a frame F is of depth d iff the subframe generated
by x is of depth d.

Definition 11. Suppose we have two frames F =< W,R > and G =< U, S >.
A map f from W onto U is called a p-morphism if the following conditions hold
for every x, y ∈ W :

xRy implies f(x)Sf(y) (4)
f(x)Sf(y) implies ∃z∈W (xRz ∧ f(z) = f(y)) (5)

Definition 12. A p-morphism f of F to G is a p-morphism from a model
M =< F, V1 > to a model N =< G, V2 > if for every variable p, for every point
x ∈ F:

(M, x) |= p iff (N, f(x)) |= p (6)
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We say in that case the model M is reducible to the model N. It is well known
(see [1], pp.31) that

Theorem 13. If f is a p-morphism from a model M =< F, V1 > to a model
N =< G, V2 > then for every formula ϕ and for every point x ∈ F:

(M, x) |= ϕ iff (N, f(x)) |= ϕ (7)

Now, we are ready to start the reduction of trees.

Lemma 14. Let F1 =< W≤n ∪ {x′}, R > and F2 =< W≤n, R > be two reflexive
and transitive trees with the length n, where x′ is the point of depth 1 such that
(M1, x

′) |= p. Let M1 =< F1, V1 > and M2 =< F2, V2 > and the valuations V1

and V2 of p do not differ in F1 and F2 at the same points.
For any α ∈ F{→,¤}, for any xi ∈ W≤n the following equivalence holds:

(M1, xi) |= α iff (M2, xi) |= α (8)

Proof. We use double induction on the depth of points and length of formula. At
the points xi 6∈ x′ ↓ (8) holds trivially. Let (x1, x2, ..., xk, x

′), k < n be any chain
of points from W≤n. For i = 0 and α = p we have xk−i = xk and it is trivial that
(8) holds. Suppose (8) holds at xk for α with the length ≤ t. We show it holds
for t+ 1. We have two cases:

1. Let α = α1 → α2 and (M1, xk) 6|= α. Then (M1, xk) |= α1 and (M1, xk) 6|=
α2. From inductive hypothesis we have (M2, xk) |= α1 and (M2, xk) 6|= α2

and hence (M2, xk) 6|= α. The proof of reverse implication is analogous.

2. Let α = ¤α1 and (M1, xk) 6|= ¤α1.

(a) Suppose it is because (M1, xk) 6|= α1. From inductive hypothesis we
have (M2, xk) 6|= α1. Then (M1, xk) 6|= ¤α1.

(b) Suppose we have (M1, xk) |= α1 and for some xl ∈ xk ↑ holds (M1, xl) 6|=
α1. But it is impossible because the only point xl being the successor
of xk is x′ at which every formula α ∈ F{→,¤} is true (it is the last
point in the frame M1).
If (M1, xk) |= ¤α1 the case is obvious.

Suppose now (8) holds at points of depth ≤ i for every formula α. It should
be shown that if (8) holds at point xk−(i+1) for α of length ≤ t, then also for α
of length t + 1. In that case the inductive step proceeds analogously to the one
presented above. ¤

On the base of Lemma 14 we need only to consider as a models for implicational-
necessitational reducts with one variable of Grzegorczyk’s logic the finite reflexive
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and transitive trees with the last points on their branches falsifying p. It coincides
with the condition of consistency of models which, in general involves Grz≤n 6=
F{→,¤}.

Lemma 15. Let M1 =< W,R, V1 > and M2 =< U, S, V2 > be two reflexive
and transitive trees with the length n and with the last points falsifying p. Let
(y1, y2, ..., yl), l ≤ n be any chain of points from U . Let the valuation in M2 is
defined as follows:

(M2, yi) |= p iff (M2, yi+1) 6|= p (9)

for any yi ∈ U and 1 ≤ i ≤ n− 1. Then the model M1 is reducible to the model
M2.

Proof. We show that there is a p-morphism from M1 onto M2 , which glues the
neighbouring points if they all falsify or satisfy p. Let (x1, x2, ..., xk), k < n be
any chain of points from W and xk is the point of depth 1. The p-morphism is
defined as follows: f(xk) = yl and yl 6|= p. If xk−1 6|= p then f(xk−1) = yl. It
proceeds as long as at some point xk−i p is true . Then f(xk−i) = yl−1. This
process is continued to the point x1. The conditions (4),(5) hold obviously as
well as the one (6).

Lemma 16. Let M1 =< W,R, V1 > be a reflexive and transitive tree with the
length n, with the last points falsifying p and with the valuation defined as follows:

(M1, xi) |= p iff (M1, xi+1) 6|= p (10)

for any xi ∈ W and 1 ≤ i ≤ n− 1.
Let M2 =< U, S, V2 > be a linear reflexive and transitive frame with the length n
with the last point falsifying p and with the valuation defined:

(M2, yi) |= p iff (M2, yi+1) 6|= p. (11)

for any yi ∈ U and 1 ≤ i ≤ n− 1.
Then the model M1 is reducible to the M2.

Proof. Since the model M2 is linearly ordered it is simply a chain of n points
(y1, y2, ..., yn) such that

yn−2t |= p (12)
yn−(2t+1) 6|= p (13)

for t ≥ 0 and such that 1 ≤ n− 2t ≤ n and 1 ≤ n− (2t+ 1) ≤ n.
Let xk−i be any point of depth i fromW . The p-morphism will be glue the points
of the same depth in M1 and is defined as follows:

f(xk−i) = yk−i (14)
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for 1 ≤ k ≤ n and i < n. The function defined above fulfills all the needed
conditions (4), (5) and (6) to be a p-morphism. ¤

From the above lemma we conclude that every extension of Grzegorczyk’s logic
Grz≤n in the reducted language is characterized by the single linear frame <
(x1, x2, ..., xn), R > with the last point falsifying p and satisfying the conditions
(12) and (13). That linear frame will be signed as F≤n

L . Every adequate modal
frame is uniquely associated with some Boolean algebra. Hence, the simplicity of
F≤n

L makes simple the investigation of the appropriate Tarski-Lindenbaum algebra
(for details see [1]). Below we present some examples of frames and appropriate
quotient algebras.

Example 17. The diagram of the algebra Grz≤1/≡ is the following:

q

q

p

p→ p

Diagram 1

Example 18. Diagram 2 presents both the frame F≤2
L and the Tarski-Lindenbaum

algebra Grz≤2/≡.
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Diagram 2

Example 19. The diagrams of F≤3
Grz and the Tarski-Lindenbaum algebra Grz≤3/≡

are the following:
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Diagram 3.

where

A1 = [p]≡
A2 = ¤A1

A3 = A1 → A2

A4 = ¤A3

A5 = A3 → A4

B1 = A4 → A2

B2 = A5 → A2

4 Determining the algebra Grz≤n/≡
The aim of this section is proving that for any n ∈ N the algebra Grz≤n/≡ is
finite and has exactly 2n elements. We start with analyzing the appropriate linear
frame F≤n

L . Let us define by induction the following formulas:

Definition 20.

A1 = p, A2n = ¤A2n−1, A2n+1 = A2n−1 → A2n, for n ≥ 1.

Lemma 21. Let F≤n
L be the linear frame for Grz≤n. For any k = 0, ..., n− 1:

xn−k ↑ |= Ak′ for any k′ ≥ 2k + 3. (15)

Proof. By induction on k. If k = 0 then the point xn is the last point in the
chain (x1, ..., xn). From Lemma 14, xn 6|= p and hence xn 6|= ¤p. This gives us
xn |= A3. It is easy to notice that xn |= Ak′ for k′ ≥ 3.
Assuming (15) to hold for points of depth ≤ k, we have xn−k ↑|= Ak′ for k′ ≥
2k + 3 and also xn−k ↑|= A2k+3. We will prove xn−k−1 |= A2k+5. If not, then
xn−k−1 |= A2k+3 and xn−k−1 6|= ¤A2k+3. Hence there is a point x′ ∈ xn−k−1 ↑
such that x′ 6|= A2k+3, but it is a contradiction. From inductive hypothesis we
have also xn−k−1 ↑|= Ak′ for k′ ≥ 2k + 5. ¤
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Lemma 22. Let F≤n
L be the linear frame for Grz≤n. Then

xn−2k |= A4k′+3 and xn−2k 6|= A4k′+1 (16)
for any k′ ≥ k and 1 ≤ n− 2k ≤ n,

xn−(2k−1) |= A4k′+1 and xn−(2k−1) 6|= A4k′+3 (17)
for any k′ ≥ k and 1 ≤ n− (2k − 1) ≤ n,

Proof. We use double induction with respect to the k and k′. Let k = 0. Then
k′ = 0 and xn 6|= p and xn |= A3. We obtained (16). If k = 1 then xn−1 |= p,
xn−1 6|= ¤p and hence xn−1 6|= A3. We obtained (17). Assume (16) and (17)
hold for some k. We show they hold for k + 1. Assume now they hold for
some k′ ≥ k and take k′ + 1. Let us consider the formula A4k′+7 = A4k′+5 →
¤A4k′+5. We will prove xn−(2k+2) 6|= A4k′+5. We know that xn−(2k+2) |= A4k′+3

and xn−(2k+2) 6|= ¤A4k′+3 because xn−(2k−1) 6|= A4k′+3. So, xn−(2k+2) |= A4k′+7 and
also xn−(2k+2) 6|= A4k′+5. The proof of (17) proceeds similarly. ¤

Corollary 23. Let F≤n
L be the linear frame for Grz≤n. For any k = 0, 1, ..., n−1:

max{k′ : xn−k 6|= A2k′+1} = k. (18)

Corollary 24. Let F≤n
L be the linear frame for Grz≤n. For any k = 0, 1, ..., n−1:

xn−k 6|= A2k′+5 → A2k′+1 iff k′ = k. (19)

Because considered frames are 1- generated they are also atomic (see [1], pp.270)
that are frames with every point being an atom. A point x is an atom in a frame
if there is a formula φ being true only at that point.

Theorem 25. The following classes are atoms in every linear frame F≤n
L :

(A2k+5 → A2k+1) → A2 for k = 0, 1, ..., n− 1

Proof. In the linear frame F≤n
L for any k ≤ n we have: xk 6|= A2. So we see that

the point xn−k is the only point at which the formula (A2k+5 → A2k+1) → A2 is
true.

Corollary 26. Every algebra Grz≤n/≡ consists of 2n equivalence classes gener-
ated by n atoms.

In the picture below the linear frame F≤n
L with listed atoms is presented.
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Diagram 4.
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Diagram 4 presents the rule of raising of the quotient algebra Grz≤n/≡. More
exactly - the whole algebra Grz≤4/≡ is drawn with a one cube being a part of
Grz≤5/≡. The diagram of Grz≤5/≡ consists of four analogous cubes not being
marked in the picture. The classes of atoms are however listed.
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