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Abstract

The paper is an attempt to count the proportion of tautologies of Grze-
gorczyk’s modal calculus among all formulas. We take advantage of some
theorems proved in [2].

1 Introduction

Let L be some logical calculus. Let |T,,| be a number of tautologies of length n
of that calculus and |F,| be a number of all formulas of that length. We define
the density u(L) as:

.| T

p(L) = Bim ||
The number p(L) if exists, is an asymptotic probability of finding a tautology
among all formulas.
In this paper we continue research concerning the density of truth in different
logics. Until now, the density for both classical and intuitionistic logics of impli-
cation of one and two variables are known (see [5],[1]) as well as the density of
implicational-negational fragments of that logics with one variable (see [§8], [3],
).
In this note we estimate the density of truth for Grzegorczyk’s logic and give it
exact value for some normal extension of this logic.

2 Grzegorczyk’s logic and its normal extensions

Syntactically, Grzegorczyk’s logic Grz is characterized as a normal extension of
S4 modal calculus by the axiom

(9rz) OO(p — Op) — p) —p
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The set of rules consists of modus ponens, substitution and necessitation.

The main aim of this paper is to count the density of Grzegorczyk’s logic. Be-
cause of complexity of the problem we have to restrict our investigation to the
language F1~5} consisted of sings of implication and necessity and one proposi-
tional variable p only. Its formal definition is including in [2].

We will consider the logics Grz=" = Grz @ J, (see [2]), containing the logic Grz
and satisfying the following inclusions:

Grz C ... ¢ Grz=" C Grz=""' C ... ¢ Grz~* C Grz*~' (1)

3 Counting formulas and generating functions

In this section we set up the way of counting formulas with the established length.
We will consider the set F, C F{H} of all formulas of the length n. The way of
measuring the length of formula is set up in [2| [Definition 9.

Definition 1. By F,, we mean the set of formulas from F{=B of the length
n—1.

We will also consider some appropriate subclasses of F),. For example if we have
a class A € F{7H} then A, = F,, N A and

Definition 2. By |A,| we mean the number of formulas from the class A,.

Lemma 3. The number [F, | of formulas from F, is given by the recursion:

[Fo| = [F[=0, [F2[=1, (2)
n—2
[Fal = |Facal + ) |ElFasil. (3)

i=1

Proof. Any formula of the length n — 1 for n > 2 is either a necessitation of
some formula of the length n — 2 for which the fragment |F,,_;| corresponds, or
an implication between some pair of formulas of the lengths i — 1 and n —i — 1,
respectively. The length of any of such implicational formulas must be (i — 1) +
(n—1i—1)+1 which is exactly n— 1. Therefore the total number of such formulas

is Y02 |F|Fo. O

The main tool for dealing with asymptotics of sequences of numbers are gener-
ating functions (see for example [7]). Let A = (Ag, A1, A, ...) be a sequence



of real numbers. It is in one-to-one correspondence to the formal power series
Yoo o Anz™. Moreover, considering z as a complex variable, this series converges
uniformly to a function f4(z) in some open disc {z € C : |z| < R}. So, with
the sequence A we can associate a complex function f4(z), called the ordinary
generating function for A, defined in a neighborhood of 0. This correspondence is
one-to-one again (unless R = 0), since the expansion of a complex function f(z),
analytic in a neighborhood of zy, into a power series Y - A, (z — zp)" is unique,
and moreover, this series is the Taylor series, given by
1 n

A=), (@)
Many questions concerning the asymptotic behaviour of A can be efficiently re-
solved by analyzing the behaviour of f4 at the complex circle |z| = R.
The key tool will be the following result due to Szegd [6] [Thm. 8.4], see also
[7] [Thm. 5.3.2], which relates the generating functions of numerical sequences to
the limit of the fractions being investigated. For the technique of proof described
below please consult also [5] as well as [8]. We need the following much simpler
version of the Szeg6 lemma.

Lemma 4. Let v(z) be analytic in |z| < 1 with z = 1 being the only singularity
at the circle |z| = 1. If v(z) in the vicinity of z = 1 has an expansion of the form

(z) =) vy(l—2)5, ()

p=>0

[NiS]

where p > 0, and the branch chosen above for the expansion equals v(0) for z =0,
then

1/2
n

o = o () -0+ o) (6)

The symbol [z"|{v(z)} stands for the coefficient of 2™ in the exponential series
expansion of v(z).
First, we determine the generating function for the sequence of numbers |F},|.

Lemma 5. The generating function fr for the numbers |F,| is

1—2 /(z+1)(1-32)

fr(2) = ——~ 5 : (7)

Proof. The recurrence |E,| = |F,_1| + S21=7 |F|| Fo_s| becomes the equality

fr(z) = 2fp(2) + fi(2) + 2° (8)
since the recursion fragment 77 |Fj||F,,_;| corresponds exactly with multipli-
cation of power series. The term |F),_;| corresponds with the function zfr(2).
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The quadratic term z? corresponds with the first non-zero coefficient in the
power series of fp. Solving the equation we get two possible solutions: fr(z) =
(1—2)/2—=V=-322=22+1/20r fr(z) = (1 —2)/2+ V=322 —22+1/2. We
have to choose the first one, since it corresponds to the assumption fr(0) = 0
(see equation (2)). O

4 Upper estimation of the density

In this section we count the density of the logic Grz=? (for details see [2]). Since
the inclusions (1) hold we conclude that

w(Grz) < pu(Grz=")

for every n € N.

It would be desirable to count the density of Grz=" for any n € N, but we have
not been able to do this. Unfortunately, even for n = 3 the needed calculations
are extremely complicated. We manage to count the density for n = 2.

For simplicity of notation we write the quotient algebra Grz=*/— by AL . It is
presented below in the Diagram 1.

T
A C
B
Diagram 1
where
A==, B=[DOp=s, C=[p—-0Op=, T=[p—p-=

Observation 6. The operations {—, 0} in the algebra AL can be displayed by
the following truth table:

— A B C T|0O

A|lT C C T|B

B|T T T T|B

C|lA A T T|C

T A B C T|T
Table 1.



For technical reason we are going to consider a new algebra obtained from the
one above by an appropriate identification. We take the open filter [C'). Let us
consider the algebra AL, = AL/cy. It is easy to observe that AL, = Grz='/_
and its diagram is the following:

cT

AB

Diagram 2
where
AB=AUB, CT=CUT

Observation 7. The operations {—,} in the algebra AL, are given by the
following truth table:

— | AB CT | O
AB | CT CT | AB
CT |AB CT | CT

Table 2.

Now, we determine the generating function fr for the class T' of tautologies of
Grz=?. To do that we start with calculating the generating functions fag, for

and fe.
Lemma 8. The generating function fap for the numbers |AB,| is

flz) =142+ X
5 :
where X = /422 4+ 2(f(2) —2) — f(2) + 1

fap(z) = (9)

For simplicity we have written this function in the term of function f. We will
repeat it to the other ones.

Proof. Table 2 shows that any formula from the class AB of the length n — 1
is either a necessitation of formula from the same class AB of the length n — 2



or an implication of formulas from classes CT and AB of the length ¢+ — 1 and
n — 1 — 1, respectively. We also know that p € AB. That gives the recurrence

|ABy| = |AB;| =0, |AB,| =1, (10)
n—1
|AB,| = |AB,_i|+ ) _|CTi||AB,_| (11)

i=1

From disjointness of classes AB and CT we have |CT;| = |F;| — |AB;|. Hence
|AB,| = |AB, 1| + Y15 (IFi| = |ABi[)|AB, .

The number |AB,,_1| corresponds to the function z f4p(z). The quadratic term 2z?
corresponds to the first non-zero coefficient in the power series of f4p. The recur-
sion fragment S 7(|F;| — |AB;|)|AB,_;| corresponds exactly to multiplication
of power series. Hence we have the equation:

fap(2) = (f(2) = fap(2)) fap(2) + 2fap(2) + 22 (12)
By solving it with the boundary condition f45(0) = 0 we have (9).
O
Corollary 9. The generating function for for the numbers |CT,| is
Z)+1—2—-X
for(z) = /() 5 . (13)
where X = /422 + 2(f(2) —2) — f(2) + 1
Proof. Tt follows from disjointness of classes AB and CT that for = f — faB.
O
Lemma 10. The generating function fo for the numbers |C,,| is
1 230U
folz) = 285y - 22 X —243(f-1) (14)
6 Y
where

y = {5+ ViTPT &,
S = 1(X(19z2+2z(11f—13)—4(f—1))+43z3+332’(7f—17)+

2
30z(1— f)),
U = _%(zX—i—ZQ—Z(f'f‘l)_Q(f_l))?

X = V424 z2(f-2)—f+1

For simplicity we have omitted in the above function the argument (z) and have
written f instead of f(z). We will repeat it hereafter.

6



Proof. From Table 1 we can notice the following recurrence for the numbers |B,|
holds:

|Bo| = 0, [Bi|=0
n—1

Bl = ([Aua| +1Bual) + Y T3l Boni (15)

i=1
This can be translated into equation:

fo=frfs+ (fa+ f)z. (16)
Since fa + fs = fap and fr = for — fc then we have:

2faB

=82 17
o 1= fer+ fc a7)
Table 1 suggests also that the recursion schema for the class C' must be:
|Col = 0, |Ci|=0
n—1
Cal = [Coal + D (A (| Bamil + [Cnil) + Tl Cril) (18)
i=1

The above recurrence gives the following equality between generating functions:

fo = zfc+(fs+ fo)fa+ frfc (19)

The unknown functions from (19) can be replaced by the already known. We
know that f4 = fap — fp and fr = for — fo. After application of the above
equalities to the (19) we get

fe = zfe+((fap — fa+ fe)(fas — fB) + (for — fo)fc (20)

From the system of equations

we obtained a four-degree equation with the unknown function fo. To solve it
we had to intensively use Mathematica package and from four solutions we chose
one satisfying the boundary condition fo(0) = 0. Then we have (14) presenting
the function fo in terms of some expressions Y, S, U, X. 0

Corollary 11. The generating function fr for the numbers |T,,| is

fr = fer — fc (21)
where the functions for and fo are defined by (13) and (14).
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To apply the Szegd lemma we have to have functions which are analytic in the
open disc |z| < 1, and the nearest singularity is at zo = 1. For that purpose we
are going to calibrate functions f and fr in the following way:

FIOREAC) fer(z) = fer (3)
foz) = feo(3) fr(z) = fr(3).

After appropriate simplification of the above expressions we get the following:

o) = (32— VB/ETHT - 2) (22)

6
o) — 3f+36—z—X )
_ 28V — 20 X sho(f-1
PIE R L sk (24
fro= Jor—1Jc (25)

Y = §/§+\/4l73+§2,

S = 5—14 (3)?(1922 +62(11f — 13) — 36(f — 1)) +432°+
92%(7f — 17) + 2702(1 — f)) ;
U = _% (3z)? +27 = 32(f +1) — 18(f - 1>) )

~

1 = Py
X = g\/422+3z(f—2)—9f+9

Note that relations between power series of appropriate functions are such as

()} = (1) 3

Lemma 12. z; = 1 is the only singularity of]? and ?; located in |z] < 1.

~

Proof. 1t is easy to observe the function f(z) has only singularities at z = 1 and

z = —3. To make sure the function fr(z) has the nearest one at z = 1, we had
to solve the following complicated equations:

X =0
Y =0
403 + §2 0

To do that we had to extensively use the Mathematica package and it occurred
that all solutions which are different from 2z = 1 are situated outside the disc
|z] < 1.



Theorem 13. Ezxpansions of functions f and ?; in a neighborhood of z =1 are
as follows:

f(Z) = fo+ fivl—z+..
?;(Z) :t0+t1\/1 — 2+ ..

where

Proof. The above coefficients have been found using the Mathematica package.
The exact values of the coefficients tg and ¢; are too long to be written here. [

Now, we can calculate the density of implicational-necessitional part of extension
of Grzegorczyk’s logic Grz=? of one variable. By applying the Szeg lemma we
get as follows:

Theorem 14.
|7 ( 2 ) (n‘Q))3”
w(Grz=?*) = lim = = lim ¢
t
= lim —(1+ 0(1)) = L ~61.27%
n—0oo fl 1

5 Lower estimation of the density

Definition 15. The set of simple modal tautologies is defined as follows:
1. p—pe ST,
2. O@(p — Op) —p) = p € ST,
3. If o € ST then Oa € ST,
4. If a € ST then 3 — a € ST for every € F{i—=U}
5 Ifa & ST, then Q.\./._sz%aeSTforkZ 1.

k—times

From the above definition it is easy to notice the set of simple tautologies is a
proper subset of the set of the ones of Grzegorczyk’s logic. Hence we have:

Observation 16. u(ST) < u(Grz)



Lemma 17. The numbers [ST, | of formulas from ST, are given by the recursion:

ISTy| = ..=|ST| =0, |STy=1], (26)
n—2

ST, = ST + > [FaillST| +
=1

((1Fus| = [STus]) + (1] = [STusl) + ... + (B3] — |ST3])) (27)

v~

(n—4)—times

Proof. From Definition 15 we see the simple modal tautologies of the length n—1
are either a necessitation of simple modal tautology of the length n — 2 or an
implication of some pairs consisted of any formula and a simple modal tautology
or the formula [1...[] p and any formula which is not a simple modal tautology.

k—times

O

Lemma 18. The generating function fsr for the numbers [ST, [ is the following:
RIS DI Cl O i)
fsr(z) = E—— (28)

Proof. From the recurrence (27) we obtain the generating function fs7 must
satisfy the following equation:

fsr(z) = [fsr(2)z+ f(2) fsr(2) + (f(2) = for(2))(z° + 2" + .+ 2"72) +
2421 (29)
Since 23 + 21 + ... + 2772 = 23% then after solving (29) with the boundary
condition fgr(0) =0 we get (28). O
Analogously as in the previous section we calibrate the function fg7:

Definition 19. ?5;(2) = fsr(3).
After a suitable substitution we have:

2\4 2\ 11 fz3(1734_”z_4+")
- (E) + (5) + 9(3—2
fST(Z) = 23(1_34—(nz—4)1+n) (30>

1_f_§+ 9(3—2)

Now, we should check that the only singularity is situated in disc |z] < 1 of the
function (28) is the point z = 1. We set up that n = 10 (which has no significant
influence for our calculations) and obtain:

)+ 6+

2 23(1-3-626)
1_f_§+ 9(3—2)

for (2) =

(31)
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Lemma 20. zy = 1 is the only singularity of the function E* located in |z| < 1.

Proof. We check that the following equation has no solution at the disc |z| < 1:

z 231 —37°29)
1l—f-24+22 2 20 —
/ 3 * 9(3 —2)
We used the Mathematica package. 0
Theorem 21. FExpansion of function fg;* in a neighborhood of z = 1 s as
follows:
For ()=t +tV/I—2+..
where
. b464 . 2256316V/3
0688777 ' 19522803 °
Proof. The above coefficients have been found using the Mathematica package.
O
Now, we have the value of the density of the set of simple modal tautologies:
Theorem 22.
Tn / —2 371
p(ST) = lim ST ’;)(( On”))

%) O(n=2))3"

t*
= gggoz(lﬂt o)) = 7

o ((
i ~ 34.67%

Theorems 14 and 22 give us some information about the density of implicational-
necessitational fragment of Grzegorczyk’s logic of one variable. We know only
that:

34.67% < u(Grz) < 61.27% (32)

Since the method of counting the densities of Grz=" is the same as the one of
Grz=? (see Diagram 3 in [2]), we hope the inequalities will be soon improved,
especially, the upper estimation. The only problem in that case are degrees of
complexity of some equations.
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