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Abstract

The paper is an attempt to count the proportion of tautologies of Grze-
gorczyk’s modal calculus among all formulas. We take advantage of some
theorems proved in [2].

1 Introduction
Let L be some logical calculus. Let |Tn| be a number of tautologies of length n
of that calculus and |Fn| be a number of all formulas of that length. We define
the density µ(L) as:

µ(L) = lim
n→∞

|Tn|
|Fn|

The number µ(L) if exists, is an asymptotic probability of finding a tautology
among all formulas.
In this paper we continue research concerning the density of truth in different
logics. Until now, the density for both classical and intuitionistic logics of impli-
cation of one and two variables are known (see [5],[1]) as well as the density of
implicational-negational fragments of that logics with one variable (see [8], [3],
[4]).
In this note we estimate the density of truth for Grzegorczyk’s logic and give it
exact value for some normal extension of this logic.

2 Grzegorczyk’s logic and its normal extensions
Syntactically, Grzegorczyk’s logic Grz is characterized as a normal extension of
S4 modal calculus by the axiom

(grz) ¤(¤(p → ¤p) → p) → p
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The set of rules consists of modus ponens, substitution and necessitation.

The main aim of this paper is to count the density of Grzegorczyk’s logic. Be-
cause of complexity of the problem we have to restrict our investigation to the
language F{→,¤} consisted of sings of implication and necessity and one proposi-
tional variable p only. Its formal definition is including in [2].
We will consider the logics Grz≤n = Grz⊕Jn (see [2]), containing the logic Grz
and satisfying the following inclusions:

Grz ⊂ ... ⊂ Grz≤n ⊂ Grz≤n−1 ⊂ ... ⊂ Grz≤2 ⊂ Grz≤1 (1)

3 Counting formulas and generating functions
In this section we set up the way of counting formulas with the established length.
We will consider the set Fn ⊆ F{→,¤} of all formulas of the length n. The way of
measuring the length of formula is set up in [2] [Definition 9].

Definition 1. By Fn we mean the set of formulas from F{→,¤} of the length
n− 1.

We will also consider some appropriate subclasses of Fn. For example if we have
a class A ∈ F{→,¤} then An = Fn ∩ A and

Definition 2. By |An| we mean the number of formulas from the class An.

Lemma 3. The number |Fn| of formulas from Fn is given by the recursion:

|F0| = |F1| = 0, |F2| = 1, (2)

|Fn| = |Fn−1|+
n−2∑
i=1

|Fi||Fn−i|. (3)

Proof. Any formula of the length n − 1 for n > 2 is either a necessitation of
some formula of the length n − 2 for which the fragment |Fn−1| corresponds, or
an implication between some pair of formulas of the lengths i− 1 and n− i− 1,
respectively. The length of any of such implicational formulas must be (i− 1) +
(n− i−1)+1 which is exactly n−1. Therefore the total number of such formulas
is

∑n−2
i=1 |Fi||Fn−i|. ¤

The main tool for dealing with asymptotics of sequences of numbers are gener-
ating functions (see for example [7]). Let A = (A0, A1, A2, . . . ) be a sequence
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of real numbers. It is in one-to-one correspondence to the formal power series∑∞
n=0 Anz

n. Moreover, considering z as a complex variable, this series converges
uniformly to a function fA(z) in some open disc {z ∈ C : |z| < R}. So, with
the sequence A we can associate a complex function fA(z), called the ordinary
generating function for A, defined in a neighborhood of 0. This correspondence is
one-to-one again (unless R = 0), since the expansion of a complex function f(z),
analytic in a neighborhood of z0, into a power series

∑∞
n=0 An(z− z0)

n is unique,
and moreover, this series is the Taylor series, given by

An =
1

n!

dnf

dzn
(z0). (4)

Many questions concerning the asymptotic behaviour of A can be efficiently re-
solved by analyzing the behaviour of fA at the complex circle |z| = R.
The key tool will be the following result due to Szegö [6] [Thm. 8.4], see also
[7] [Thm. 5.3.2], which relates the generating functions of numerical sequences to
the limit of the fractions being investigated. For the technique of proof described
below please consult also [5] as well as [8]. We need the following much simpler
version of the Szegö lemma.

Lemma 4. Let v(z) be analytic in |z| < 1 with z = 1 being the only singularity
at the circle |z| = 1. If v(z) in the vicinity of z = 1 has an expansion of the form

v(z) =
∑
p≥0

vp(1− z)
p
2 , (5)

where p > 0, and the branch chosen above for the expansion equals v(0) for z = 0,
then

[zn]{v(z)} = v1

(
1/2

n

)
(−1)n + O(n−2). (6)

The symbol [zn]{v(z)} stands for the coefficient of zn in the exponential series
expansion of v(z).
First, we determine the generating function for the sequence of numbers |Fn|.
Lemma 5. The generating function fF for the numbers |Fn| is

fF (z) =
1− z

2
−

√
(z + 1)(1− 3z)

2
. (7)

Proof. The recurrence |Fn| = |Fn−1|+
∑n−2

i=1 |Fi||Fn−i| becomes the equality

fF (z) = zfF (z) + f 2
F (z) + z2 (8)

since the recursion fragment
∑n−2

i=1 |Fi||Fn−i| corresponds exactly with multipli-
cation of power series. The term |Fn−1| corresponds with the function zfF (z).
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The quadratic term z2 corresponds with the first non-zero coefficient in the
power series of fF . Solving the equation we get two possible solutions: fF (z) =
(1 − z)/2 − √−3z2 − 2z + 1/2 or fF (z) = (1 − z)/2 +

√−3z2 − 2z + 1/2. We
have to choose the first one, since it corresponds to the assumption fF (0) = 0
(see equation (2)). ¤

4 Upper estimation of the density
In this section we count the density of the logic Grz≤2 (for details see [2]). Since
the inclusions (1) hold we conclude that

µ(Grz) < µ(Grz≤n)

for every n ∈ N.
It would be desirable to count the density of Grz≤n for any n ∈ N, but we have
not been able to do this. Unfortunately, even for n = 3 the needed calculations
are extremely complicated. We manage to count the density for n = 2.
For simplicity of notation we write the quotient algebra Grz≤2/≡ by AL . It is
presented below in the Diagram 1.
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A C
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T

Diagram 1
where

A = [p]≡, B = [¤p]≡, C = [p → ¤p]≡, T = [p → p]≡

Observation 6. The operations {→, ¤} in the algebra AL can be displayed by
the following truth table:

→ A B C T ¤
A T C C T B
B T T T T B
C A A T T C
T A B C T T

Table 1.
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For technical reason we are going to consider a new algebra obtained from the
one above by an appropriate identification. We take the open filter [C). Let us
consider the algebra AL1 = AL/[C). It is easy to observe that AL1 = Grz≤1/≡
and its diagram is the following:

q

q

AB

CT

Diagram 2

where

AB = A ∪B, CT = C ∪ T

Observation 7. The operations {→,¤} in the algebra AL1 are given by the
following truth table:

→ AB CT ¤
AB CT CT AB
CT AB CT CT

Table 2.

Now, we determine the generating function fT for the class T of tautologies of
Grz≤2. To do that we start with calculating the generating functions fAB, fCT

and fC .

Lemma 8. The generating function fAB for the numbers |ABn| is

fAB(z) =
f(z)− 1 + z + X

2
. (9)

where X =
√

4z2 + z(f(z)− 2)− f(z) + 1

For simplicity we have written this function in the term of function f . We will
repeat it to the other ones.

Proof. Table 2 shows that any formula from the class AB of the length n − 1
is either a necessitation of formula from the same class AB of the length n − 2
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or an implication of formulas from classes CT and AB of the length i − 1 and
n− i− 1, respectively. We also know that p ∈ AB. That gives the recurrence

|AB0| = |AB1| = 0, |AB2| = 1, (10)

|ABn| = |ABn−1|+
n−1∑
i=1

|CTi||ABn−i| (11)

From disjointness of classes AB and CT we have |CTi| = |Fi| − |ABi|. Hence
|ABn| = |ABn−1|+

∑n−1
i=1 (|Fi| − |ABi|)|ABn−i|.

The number |ABn−1| corresponds to the function zfAB(z). The quadratic term z2

corresponds to the first non-zero coefficient in the power series of fAB. The recur-
sion fragment

∑n−2
i=1 (|Fi| − |ABi|)|ABn−i| corresponds exactly to multiplication

of power series. Hence we have the equation:

fAB(z) = (f(z)− fAB(z))fAB(z) + zfAB(z) + z2. (12)

By solving it with the boundary condition fAB(0) = 0 we have (9).
¤

Corollary 9. The generating function fCT for the numbers |CTn| is

fCT (z) =
f(z) + 1− z −X

2
. (13)

where X =
√

4z2 + z(f(z)− 2)− f(z) + 1

Proof. It follows from disjointness of classes AB and CT that fCT = f − fAB.
¤

Lemma 10. The generating function fC for the numbers |Cn| is

fC(z) =
1

6

(
2

2
3 Y − 2

4
3 U

Y
−X − z + 3(f − 1)

)
(14)

where

Y =
3

√
S +

√
4U3 + S2,

S =
1

2

(
X(19z2 + 2z(11f − 13)− 4(f − 1)) + 43z3 + 3z2(7f − 17)+

30z(1− f)) ,

U = −1

2

(
zX + z2 − z(f + 1)− 2(f − 1)

)
,

X =
√

4z2 + z(f − 2)− f + 1

For simplicity we have omitted in the above function the argument (z) and have
written f instead of f(z). We will repeat it hereafter.
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Proof. From Table 1 we can notice the following recurrence for the numbers |Bn|
holds:

|B0| = 0, |B1| = 0

|Bn| = (|An−1|+ |Bn−1|) +
n−1∑
i=1

|Ti||Bn−i| (15)

This can be translated into equation:

fB = fT fB + (fA + fB)z. (16)

Since fA + fB = fAB and fT = fCT − fC then we have:

fB =
zfAB

1− fCT + fC

. (17)

Table 1 suggests also that the recursion schema for the class C must be:

|C0| = 0, |C1| = 0

|Cn| = |Cn−1|+
n−1∑
i=1

(|Ai|(|Bn−i|+ |Cn−i|) + |Ti||Cn−i|) (18)

The above recurrence gives the following equality between generating functions:

fC = zfC + (fB + fC)fA + fT fC (19)

The unknown functions from (19) can be replaced by the already known. We
know that fA = fAB − fB and fT = fCT − fC . After application of the above
equalities to the (19) we get

fC = zfC + ((fAB − fA + fC)(fAB − fB) + (fCT − fC)fC (20)

From the system of equations
{

(17)
(20)

we obtained a four-degree equation with the unknown function fC . To solve it
we had to intensively use Mathematica package and from four solutions we chose
one satisfying the boundary condition fC(0) = 0. Then we have (14) presenting
the function fC in terms of some expressions Y, S, U,X. ¤

Corollary 11. The generating function fT for the numbers |Tn| is
fT = fCT − fC (21)

where the functions fCT and fC are defined by (13) and (14).
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To apply the Szegö lemma we have to have functions which are analytic in the
open disc |z| < 1, and the nearest singularity is at z0 = 1. For that purpose we
are going to calibrate functions f and fT in the following way:

f̂(z) = f
(

z
3

)
f̂CT (z) = fCT

(
z
3

)

f̂C(z) = fC

(
z
3

)
f̂T (z) = fT

(
z
3

)
.

After appropriate simplification of the above expressions we get the following:

f̂(z) =
1

6

(
3− z −

√
3
√

(z + 3)(1− z)
)

(22)

f̂CT (z) =
3f̂ + 3− z − X̂

6
(23)

f̂C(z) =
(2

2
3 Ŷ − 2

4
3 bU
bY − X̂ − z + 9(f̂ − 1)

18
(24)

f̂T = f̂CT − f̂C (25)
where

Ŷ =
3

√
Ŝ +

√
4Û3 + Ŝ2,

Ŝ =
1

54

(
3X̂(19z2 + 6z(11f̂ − 13)− 36(f̂ − 1)) + 43z3+

9z2(7f̂ − 17) + 270z(1− f̂)
)

,

Û = − 1

18

(
3zX̂ + z2 − 3z(f̂ + 1)− 18(f̂ − 1)

)
,

X̂ =
1

3

√
4z2 + 3z(f̂ − 2)− 9f̂ + 9

Note that relations between power series of appropriate functions are such as
[zn]{f(z)} =

(
[zn]{f̂(z)}

)
3n.

Lemma 12. z0 = 1 is the only singularity of f̂ and f̂T located in |z| ≤ 1.

Proof. It is easy to observe the function f̂(z) has only singularities at z = 1 and
z = −3. To make sure the function f̂T (z) has the nearest one at z = 1, we had
to solve the following complicated equations:

X̂ = 0

Ŷ = 0

4Û3 + Ŝ2 = 0

To do that we had to extensively use the Mathematica package and it occurred
that all solutions which are different from z = 1 are situated outside the disc
|z| ≤ 1.
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Theorem 13. Expansions of functions f̂ and f̂T in a neighborhood of z = 1 are
as follows:

f̂(z) = f0 + f1

√
1− z + ...

f̂T (z) = t0 + t1
√

1− z + ...

where

f0 =
1

3
, f1 = − 1√

3
, . . . , t0 = 0.104415..., t1 = −0.356051...

Proof. The above coefficients have been found using the Mathematica package.
The exact values of the coefficients t0 and t1 are too long to be written here. ¤

Now, we can calculate the density of implicational-necessitional part of extension
of Grzegorczyk’s logic Grz≤2 of one variable. By applying the Szegö lemma we
get as follows:

Theorem 14.

µ(Grz≤2) = lim
n→∞

|Tn|
|Fn| = lim

n→∞
(t1

(
1/2
n

)
(−1)n + O(n−2))3n

(f1

(
1/2
n

)
(−1)n + O(n−2))3n

= lim
n→∞

t1
f1

(1 + o(1)) =
t1
f1

≈ 61.27%

5 Lower estimation of the density
Definition 15. The set of simple modal tautologies is defined as follows:

1. p → p ∈ ST ,

2. ¤(¤(p → ¤p) → p) → p ∈ ST ,

3. If α ∈ ST then ¤α ∈ ST ,

4. If α ∈ ST then β → α ∈ ST for every β ∈ F{→,¤},

5. If α 6∈ ST , then ¤...¤︸ ︷︷ ︸
k−times

p → α ∈ ST for k ≥ 1.

From the above definition it is easy to notice the set of simple tautologies is a
proper subset of the set of the ones of Grzegorczyk’s logic. Hence we have:

Observation 16. µ(ST ) < µ(Grz)
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Lemma 17. The numbers |STn| of formulas from STn are given by the recursion:

|ST0| = ... = |ST3| = 0, |ST4 = 1|, (26)

|STn| = |STn−1|+
n−2∑
i=1

|Fn−i||STi| +

((|Fn−3| − |STn−3|) + (|Fn−4| − |STn−4|) + ... + (|F2| − |ST2|))︸ ︷︷ ︸
(n−4)−times

.(27)

Proof. From Definition 15 we see the simple modal tautologies of the length n−1
are either a necessitation of simple modal tautology of the length n − 2 or an
implication of some pairs consisted of any formula and a simple modal tautology
or the formula ¤...¤︸ ︷︷ ︸

k−times

p and any formula which is not a simple modal tautology.

¤

Lemma 18. The generating function fST for the numbers |STn| is the following:

fST (z) =
z4 + z11 + fz3(1−z−4+n)

1−z

1− f − z + z3(1−z−4+n)
1−z

(28)

Proof. From the recurrence (27) we obtain the generating function fST must
satisfy the following equation:

fST (z) = fST (z)z + f(z)fST (z) + (f(z)− fST (z))(z3 + z4 + ... + zn−2) +

z4 + z11 (29)

Since z3 + z4 + ... + zn−2 = z3 1−zn−4

1−z
then after solving (29) with the boundary

condition fST (0) = 0 we get (28). ¤
Analogously as in the previous section we calibrate the function fST :

Definition 19. f̂ST (z) = fST ( z
3
).

After a suitable substitution we have:

f̂ST (z) =

(
z
3

)4
+

(
z
3

)11
+ fz3(1−34−nz−4+n)

9(3−z)

1− f − z
3

+ z3(1−34−nz−4+n)
9(3−z)

(30)

Now, we should check that the only singularity is situated in disc |z| ≤ 1 of the
function (28) is the point z = 1. We set up that n = 10 (which has no significant
influence for our calculations) and obtain:

f̂ST

∗
(z) =

(
z
3

)4
+

(
z
3

)11
+ fz3(1−3−6z6)

9(3−z)

1− f − z
3

+ z3(1−3−6z6)
9(3−z)

(31)
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Lemma 20. z0 = 1 is the only singularity of the function f̂ST

∗
located in |z| ≤ 1.

Proof. We check that the following equation has no solution at the disc |z| ≤ 1:

1− f − z

3
+

z3(1− 3−6z6)

9(3− z)
= 0

We used the Mathematica package. ¤

Theorem 21. Expansion of function f̂ST

∗
in a neighborhood of z = 1 is as

follows:

f̂ST

∗
(z) = t∗0 + t∗1

√
1− z + ...

where

t∗0 =
5464

68877
, t∗1 = −2256316

√
3

19522803
, ...

Proof. The above coefficients have been found using the Mathematica package.
¤

Now, we have the value of the density of the set of simple modal tautologies:

Theorem 22.

µ(ST ) = lim
n→∞

|STn|
|Fn| = lim

n→∞
(t∗1

(
1/2
n

)
(−1)n + O(n−2))3n

(f1

(
1/2
n

)
(−1)n + O(n−2))3n

= lim
n→∞

t∗1
f1

(1 + o(1)) =
t∗1
f1

≈ 34.67%

Theorems 14 and 22 give us some information about the density of implicational-
necessitational fragment of Grzegorczyk’s logic of one variable. We know only
that:

34.67% < µ(Grz) < 61.27% (32)

Since the method of counting the densities of Grz≤3 is the same as the one of
Grz≤2 (see Diagram 3 in [2]), we hope the inequalities will be soon improved,
especially, the upper estimation. The only problem in that case are degrees of
complexity of some equations.
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