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The aim of this paper is counting the probability that a random modal formula is a tautology. We examine{→, 2}
fragment of two modal logicsS5 andS4 over the language with one propositional variable. Any modal formula
written in such a language may be interpreted as a unary binary tree. As it is known, there are finitely many different
formulas written in one variable in the logicS5 and this is the key to count the proportion of tautologies ofS5 among
all formulas. Although the logicS4 does not have this property, there exist its normal extensions having finitely many
non-equivalent formulas.
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1 Introduction
Modal logic is a widely applicable method of reasoning for many areas of computer science. These areas
include artificial intelligence, database theory, distributed systems, programs verification and cryptogra-
phy theory (see for example (1), (8)). Computer scientists have examined the difficulty of problems in
modal logic, such as satisfiability. Satisfiability determines whether a formula in a given logic is satisfi-
able. Our approach also concerns the satisfiable formulas but in a quite different way. We are interested in
counting the proportions of such formulas among all formulas of some given modal logic. The complexity
of this problem involves we analyze some well described fragments of modal logic.

This paper consists of two parts. The first one is an algebraical characterization of two modal algebras:
one-generatedS5 algebra and one-generated algebra for Grzegorczyk’s modal logic. We chose these
modal logics because they have good semantical properties. We are especially interested in their relational
semantic, which is known as Kripke frames and models. We start with analysis of the appropriate frame.
Then we characterize its algebraical counterpart, which is some modal algebra(i) . By the one-generated
modal algebra we mean the algebra obtained from one non-zero and non-unit element by closing it under
the operations. For details see (2).

The second part is devoted to calculation of numbers of formulas being tautologies of the considered
logics. We are especially interested in asymptotic properties of the fractions of tautologies. LetL be some
logical calculus. Let|Tn| be a number of tautologies of lengthn of that calculus and|Fn| be a number of
all formulas of that length. We define the densityµ(L) as:

(i) A structureA = 〈A,∩,∪,−, I, 0, 1〉 is a modal algebra if: (1)〈A,∩,∪,−, 0, 1〉 is a Boolean algebra, and (2)I is a unary
operator that satisfies (i)I(1) = 1 and (ii)I(a ∩ b) = I(a) ∩ I(b) for a, b ∈ A.
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µ(L) = lim
n→∞

|Tn|
|Fn|

If the limit exists, then it is the probability that a random formula is a tautology and is calleddensity
of truth. This paper is continuation of research concerning thedensity of truthin different logics. Until
now, thedensity of truthfor classical (and intuitionistic) logic of implication of one and two variables are
known (see (15),(9)) as well as thedensityof implicational-negational fragments of that calculus with one
variable (see (18),(13)). There are also many results concerning thedensity of truthof classical logic with
the connectives of conjunction, disjunction and negation. For example, see (3) and (6). Regarding modal
logics, there is made only a rough estimation of thedensity of truthfor Grzegorczyk’s logic. It is proved
in (11) that

34.672% < µ(Grz) < 61.27%

In this paper we significantly improve the above estimation and compare this result with the one for the
logic S5. The methods described in (3), (6) and (5) will be used.

2 Normal extensions of S4 modal logic. Modal logic S5
Syntactically, the modal logicS4 is obtained by adding to axioms of classical logic the following modal
formulas(ii) (re) 2p → p, (K) 2(p → q) → (2p → 2q), (tra) 2p → 22p. The logicS4 is defined
as a set of all consequences of new axioms by modus ponens, substitution and necessitation(RG) rules.
The last one can be presented in the following scheme:` α/ ` 2α.

By a frame we mean a pairF = 〈W,R〉 consisting of a nonempty setW and a binary relationR on
W . The elements ofW are called points (or worlds) andxRy is read as ‘y is accessible fromx’. A
modal proposition2ϕ is regarded to be true in a worldx if ϕ is true in all the worlds alternative (being
in relationR) to x; 3ϕ is true inx if ϕ is true at least in one alternative world. Concrete properties of
the alternativeness relation depends on the type of the modality under consideration. For theS4 logic the
relationR should be reflexive and transitive. Byx ↑ we mean the set of successors ofx and byx ↓ -the
set of its predecessors.

The Grzegorczyk logicGrz is characterized as a normal extension of the Lewis calculusS4 by the
Grzegorczyk axiom:(grz) 2(2(p→ 2p) → p) → p.

Symbolically, the normal extension is written byGrz = S4⊕ (grz), where⊕means the closure under
modus ponens, substitution andRG.

Semantically, theGrz logic is characterized by the class of finite reflexive and transitive trees.
Recall, that by a tree we mean a rooted frameF = 〈W,R〉 such that for every pointx ∈W , the setx ↓

is finite and linearly ordered byR. A frameF = 〈W,R〉 is a rooted one if there is a worldx ∈ W such
that for anyy ∈ W, y 6= x, y ∈ x ↑. A transitive frame is rooted if there exists a pointx ∈ W such that
for anyy ∈W , y ∈ x ↑.
(ii) S4 Lewis modal logic is a super-system of the logics S1, S2 and S3 and a sub-system of S5. They were first defined in 1932 in

Lewis and Langford’s bookSymbolic Logicand to axiomatize them, the authors used the functor of so-called strict implication.
For details see (7).
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In this section we examine normal extensions of Grzegorczyk’s logic obtained by adding to the set of
axioms new formulas. The considered in this section axiomatic extensions are uniformly connected with
depth of trees.

Definition 1 A frameF is of depthn < ω if there is a chain ofn points inF and no chain of more thann
points exists inF.

Forn > 0, let Jn be an axiom saying that any strictly ascending partial-ordered sequence of points is
of lengthn at most. The form of the needed formulasJn is well known (see (2) p.42). They are defined
inductively as follows(iii) :

Definition 2

J1 = 32p1 → p1,

Jn+1 = 3(2pn+1∧ ∼ Jn) → pn+1.

We will consider the logicsGrz≤n = Grz⊕ Jn. Let us notice that for any formulaϕ if ϕ ∈ Grz≤n

(that meansϕ is true in every world of the tree of depthn), thenϕ ∈ Grz≤n−1 ( ϕ is true in every world
of the tree of depthn− 1). Hence the following inclusions hold:

Grz ⊂ ... ⊂ Grz≤n ⊂ Grz≤n−1 ⊂ ... ⊂ Grz≤2 ⊂ Grz≤1. (1)

The Lewis modal logicS5 is characterized as a normal extension ofS4 by the axiom:
(sym) p→ 32p.

Semantically,S5 is characterized by the class of reflexive symmetric and transitive frames. Such rela-
tion is an equivalence relation and in that case any two worlds are alternatives to each other.

Because the logicsS5 andGrz are axiomatic extensions ofS4 logic then the following inclusions take
places:S4 ⊂ S5 andS4 ⊂ Grz.

The logicsS5 andGrz are however incomparable. The formula(grz) is not provable inS5 whereas
the formula(sym) is not a theorem ofGrz.

3 One-generated fragments of Grz≤3 and S5

We will consider setF {→,2} of formulas built up from one propositional variablep by means of necessi-
tation and implication only.

p ∈ F {→,2},

α→ β ∈ F {→,2} iff α ∈ F {→,2} and β ∈ F {→,2},

2α ∈ F {→,2} iff α ∈ F {→,2}.

(iii) The formulasJn are defined in the full language (with negation and the operator of possibility and with unrestricted number of
variables). In the languageF {→,2} we can find the analogous formulas. In (10) the author considered the sequence of following
formulas defined inductively:A1 := p, A2n := 2A2n−1, A2n+1 := A2n−1 → A2n for n ≥ 1. It is shown that the formula
A2n+1 plays the same role as the formulaJn.
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By a one-generated logic we mean the logic restricted to formulas built up from one variable. The
one-generated parts of logicsGrz≤3 andS5, (over the language with→ and2) will be represented
appropriately by the symbolsGrz≤3(1) andS5(1).

The simplest manner to characterize the logicsGrz≤3(1) and S5(1) is examining the appropriate
Tarski-Lindenbaum algebrasGrz≤3(1)/≡ andS5(1)/≡. Let us introduce an equivalence relation on the
considered logics:

Definition 3 α ≡ β iff α → β ∈ M andβ → α ∈ M, where the symbolM stands forGrz≤3(1) or
S5(1).

In (10) the author gave a precise characterization of the quotient algebrasGrz≤n(1)/≡ for anyn ≥ 1.
Forn = 3 as well as forS5(1)/≡ we have:

Lemma 4 Both the algebrasGrz≤3(1)/≡ andS5(1)/≡ consist of the following eight equivalence classes:

A1 = [p]≡ A2 = [2p]≡
A3 = [p→ 2p]≡ A4 = [2(p→ 2p)]≡
A5 = A3 → A4 B1 = A4 → A2

B2 = A5 → A2 T = [p→ p]≡

and are closed under the operations→ and2.

Proof. For Grz≤3(1)/≡ see (10). The proof forS5 may be made by a mutual calculation or by
taking the advantage of canonical and universal frames. The universal frameγFS5(1) generated by one
variable consists of one two-point cluster and one reflexive point falsifyingp. Hence the dual algebra
(which is in fact isomorphic to the Tarski-Lindenbaum algebra) has to have23 elements. The classes
[p]≡, [2(p → 2p)]≡, and[((p → 2p) → 2(p → 2p)) → 2p]≡ are atoms ofS5(1)/≡. For details we
refer the reader to (2). 2

Let us notice, that the equivalence classes presented above, are not identical in the both cases ofS5(1)
andGrz≤3(1) logics. They have only the same representant. To avoid misunderstanding, we propose to
mark the classT of tautologies ofGrz≤3(1) by TGrz and analogously forS5(1) - TS5.

Observation 5 The operations{→,2} in the algebraGrz≤3(1)/≡ can be displayed in Table1.

Observation 6 The operations{→,2} in the algebraS5(1)/≡ can be displayed in Table2.

The order forms the following lattice diagrams of the eight-elementGrz≤3(1)/≡ andS5(1)/≡ modal
algebras, which are, in fact, eight-element Boolean cubes (see Figure1). The open circle stands for the
open element of the given algebra. An elementA is open if2A = A. Let us stress the main difference
between the investigated algebras: the classA5 is open in the algebraGrz≤3(1)/≡ whereas inS5(1)/≡
- is not.

To give a satisfying characterization of the algebraGrz≤3(1)/≡ it is necessary to notice that it has two
non-trivial open filters[A5) and [A4). They determine two congruence relations onGrz≤3(1)/≡. We
divide the considered algebra by them and in this manner obtain some identification of classes. Exactly,
we obtain the following two new quotient algebrasAL1 andAL2.
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→ A1 A2 A3 A4 A5 B1 B2 TGrz 2

A1 TGrz A3 A3 A3 TGrz TGrz A3 TGrz A2

A2 TGrz TGrz TGrz TGrz TGrz TGrz TGrz TGrz A2

A3 A1 A1 TGrz A5 A5 B1 B1 TGrz A4

A4 B1 B1 TGrz TGrz TGrz B1 B1 TGrz A4

A5 B1 B2 A3 A3 TGrz B1 B2 TGrz A5

B1 A5 A4 A3 A4 A5 TGrz A3 TGrz A2

B2 A5 A5 TGrz A5 A5 TGrz TGrz TGrz A2

TGrz A1 A2 A3 A4 A5 B1 B2 TGrz TGrz

Tab. 1: Truth table forGrz≤3(1)/≡

→ A1 A2 A3 A4 A5 B1 B2 TS5 2

A1 TS5 A3 A3 A3 TS5 TS5 A3 TS5 A2

A2 TS5 TS5 TS5 TS5 TS5 TS5 TS5 TS5 A2

A3 A1 A1 TS5 A5 A5 B1 B1 TS5 A4

A4 B1 B1 TS5 TS5 TS5 B1 B1 TS5 A4

A5 B1 B2 A3 A3 TS5 B1 B2 TS5 A4

B1 A5 A4 A3 A4 A5 TS5 A3 TS5 A2

B2 A5 A5 TS5 A5 A5 TS5 TS5 TS5 A2

TS5 A1 A2 A3 A4 A5 B1 B2 TS5 TS5

Tab. 2: Truth table forS5(1)/≡

Definition 7

AL1 = Grz≤3(1)/≡/[A5)

AL2 = Grz≤3(1)/≡/[A4)

Their diagrams are presented in Figure2.
There is some simple observation from (10):

Observation 8

AL1 = Grz≤2(1)/≡
AL2 = Grz≤1(1)/≡

In the algebraS5(1)/≡ there is only one open filter[A4). The new quotient algebraAL3 = S5(1)/≡/[A4)

is identical withAL2.

4 Counting formulas and generating functions
In this section we set up the way of counting formulas with the established length. We will consider the
setFn ⊆ F {→,2} of all formulas of lengthn.
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Fig. 1: Diagrams ofGrz≤3(1)/≡ andS5(1)/≡.
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A = A1 ∪B1, B = A2 ∪B2,

C = A3 ∪A4, D = A5 ∪ TGrz,

AB = A ∪B, CD = C ∪D

Fig. 2: Diagram ofAL1 andAL2

Definition 9 By |φ| we mean the length of formulaφ which is the total number of occurrences of propo-
sitional variablep in the formula, including the implication and the sign of necessity operator. Formally

|p| = 1,
|φ→ ψ| = |φ|+ |ψ|+ 1, (2)

|2φ| = |φ|+ 1.

Definition 10 ByFn we mean the set of formulas fromF {→,2} of lengthn.

We will also consider some appropriate subclasses ofFn. For example if we have a classA ∈ F {→,2}

thenAn = Fn ∩A.

Definition 11 By |An| we mean the number of formulas from the classAn.
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The main tool for dealing with asymptotics of sequences of numbers aregenerating functions.A nice
exposition of this method can be found in (16) and (5).

Lemma 12 The generating functionfF for the numbers|Fn| is

fF (z) =
1− z

2z
−

√
(z + 1)(1− 3z)

2z
. (3)

Proof. It is easy to observe that the generating functionfF for the numbers|Fn| is the one for unary
binary trees (see (5), p.65). 2

Suppose, we have a system of non-linear equations−→yj = Φj(z, y1, ...ym) for 1 ≤ j ≤ m, where any
yj =

∑∞
n=0 ajz

n. The following result known as Drmota-Lalley-Woods theorem (see (5), Thm. 8.13,
p.71) is of great importance in the both cases of solving the system explicitly or implicitly.

Theorem 13 Consider a nonlinear polynomial system, defined by a set of equations

{−→y = Φj(z, y1, ..., ym)}, 1 ≤ j ≤ m

satisfying the following properties:

1. a-properness:Φ is a contraction, i.e. satisfies the Lipschitz condition

d(Φ(y1, ..., ym),Φ(y′1, ..., y
′
m)) < Kd((y1, ..., ym), (y′1, ..., y

′
m)), K < 1.

2. a-positivity: all terms of the seriesΦj(−→y ) are≥ 0.

3. a-irreducibility: the dependency graph of the algebraic system is built onm vertices: 1,2,...,m;
there is an edge from a vertexk to a vertexj if yj appears inφk. The algebraic system is an
irreducible if its dependency graph is strongly connected.

4. a-aperiodicity: z (not z2 or z3...) is the right variable, that means for eachφj there exist three
monomialsza, zb, andzc such thatb− a andc− a are relatively prime.

Then

1. All component solutionsyi have the same radius of convergenceρ <∞.

2. There exist functionshj analytic at the origin such that

yj = hj(
√

1− z/ρ), (z → ρ−). (4)

3. All other dominant singularities are of the formρω with ω being a root of unity.

4. If the system is a-aperiodic then allyj haveρ as unique dominant singularity. In that case, the
coefficients admit a complete asymptotic expansion of the form:

[zn]yj(z) ∼ ρ−n


∑

k≥1

dkn
−1−k/2


 . (5)
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From (5) there is a simple transition by the so called transfer lemma from (4), to a formula defining
the value of the coefficients[zn]yj(z). So, the a-aperiodicity of a system of equations is a very desirable
property. The application of the above theorem will proceed in the following way. Suppose, we have two
functionsfT andfF enumerating tautologies and all formulas of some logic. Suppose, they have the same
dominant singularityρ and there are the suitable constantsα1, α2, β1, β2 such that:

fT (z) = α1 − β1

√
1− z/ρ+O(1− z/ρ), (6)

fF (z) = α2 − β2

√
1− z/ρ+O(1− z/ρ). (7)

Then thedensity of truth(probability that a random formula is a tautology) is given by:

µ(T ) = lim
n→∞

[zn]fT (z)
[zn]fF (z)

=
β1

β2
. (8)

Let us notice that the limit (8) exists in the case of a-aperiodic system of equations. The lack of this
property involves the limit does not exist (see for example (17)). Such situation is considered in (12)
and (14) where the authors investigate the existence of density of the purely equivalential fragments of
classical and intuitionistic logics.

5 Counting the density of Grz≤3

At the begining of this section we quote (without a proof) the main generating functions for the classes of
formulas from the algebrasAL1 andAL2. From (11) we have(iv) :

Lemma 14 The generating functionsfAB andfCD for the numbers|ABn| and|CDn| are

fAB(z) =
zf(z)− 1 + z +X

2z
, (9)

fCD(z) =
zf(z) + 1− z −X

2z
, (10)

where

X =
√

4z2 + (1− z − f(z))2.

For simplicity we have written this function in the term of functionf . We will repeat it to the other one.

Proof. See the proof of Lemma 8 from (11).
2

Lemma 15 The generating functionfC for the numbers|Cn| is

fC(z) =
T

4z
+

1
2

√
X +

1
2

√
− Y

921/3z4
+
T 2 + 4U

3z2
− S

Y
+
T 3 + 4TU +R

4Xz3

where

(iv) There is a small change in the present approach (actually, we have changed the way of counting length of formula), hence there
are some differences between the functions presented above and those ones from (11). The method of determining them is exactly
the same.
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Y = 3z 3
√
W +

√
−4(Sz2)3 +W 2,

W = z3(−2U3 +
9
8
TU +

27
64
R2)− z7(T 2fAB + 72UfAB),

R = 8
(−1 + (1 + f − fAB)z + (1 + (−1 + f)fAB)z2 + (1 + 2(1 + f)fAB)z3

)
,

X =
Y

921/3z4
+
T 2

4z2
+

2U
3z2

+
S

Y
,

S = U2 − 12fABz
4 − 3

8
TR,

T = −3 + z + 3zf − 2zfAB ,

U = −3 + (2 + 3f − 3fAB)z + (2 + f + 3ffAB)z2.

For simplicity we have omitted in the above function the argument(z) and have writtenf andfAB instead
of f(z) andfAB(z).

Proof. See the proof of Lemma 10 from (11).
As we see the generating functions for the classCn is really complicated (to determine it we have to

solve a four-degree equation). Because it is not essential for the paper we do not quote here the functions
fA fB andfD. For the whole algebraGrz≤3(1)/≡ we would have to solve equation of eight degree.
From Table1 we obtain the system of the following equations:

f1 = (f8f1 + f3(f1 + f2))z + z, (11)

f2 = (f8f2 + f1 + f2 + f6 + f7)z, (12)

f3 = (f1(f2 + f3 + f4 + f7) + f5(f3 + f4) + f6(f3 + f7) + f8f3)z, (13)

f4 = (f6(f2 + f4) + f8f4 + f3 + f4)z, (14)

f5 = (f3(f4 + f5) + f6(f1 + f5) + f7(f1 + f2 + f4 + f5)+
+f8f5 + f5) z, (15)

f6 = (f3(f6 + f7) + f4(f1 + f2 + f6 + f7) + f5(f1 + f5) + f8f6)z, (16)

f7 = (f5(f2 + f7) + f8f7)z, (17)

f8 =
(
f1(f1 + f5 + f6) + f2(f1 + f2 + f3 + f4 + f5 + f6 + f7) + f2

3 +

+f4(f3 + f4 + f5) + f2
5 + f2

6 f7(f3 + f6 + f7) + f8fF + f8
)
z, (18)

where

f1 = fA1 , f2 = fA2 , f3 = fA3 , f4 = fA4 ,

f5 = fA5 , f6 = fB1 , f7 = fB2 , f8 = fTGrz .

Furthermore, we have that:

fF = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8, (19)

f2 + f7 = fB (20)

f1 + f6 = fA (21)

f3 + f4 = fC (22)
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Application of (19)-(22)into (11)-(18) gives us a simpler system:

f1 = (f8f1 + f3(f1 + f2))z + z,

f2 = (f8f2 + fAB)z,
f3 = (f1(f2 + fC + f7) + f5fC + f6(f3 + f7) + f8f3)z,
f4 = (f6(f2 + f4) + f8f4 + fC)z,
f5 = (f3(f4 + f5) + f6(f1 + f5) + f7(f1 + f2 + f4 + f5)+

+f8f5 + f5) z,
f6 = (f3(f6 + f7) + f4fAB + f5(f1 + f5) + f8f6)z,
f7 = (f5fB + f8f7)z,
f8 =

(
f1(fA + f5) + f2(fF − f8) + f2

3 +

+f4(fC + f5) + f2
5 + f2

6 f7(f3 + f6 + f7) + f8fF + f8
)
z.

Of course, there is possible further simplification of the above system of equations. Anyway, this
also leads to 8-degree equation with very complex functions. Even with taking the advantage ofthe
Mathematicapackage the needed calculations are not feasible. Hence, we decide to solve the system
numerically.

Let us notice that the system of equations (11)-(18) is a-proper, a-positive, a-irreducible and a-aperiodic.
So, it is possible to apply the Drmota-Lalley-Woods Theorem13. Furthermore, for anyi = 1, ..., 8 all the
functionsfi have the same dominant singularityz0 = 1

3 and there exist their expansions aroundz0 in the
form:

fi = ai + bi
√

1− 3z +O(1− 3z).

From equation (3) defining the main generating function, after a simple calculation we obtain:

Lemma 16

fF (z) = 1−
√

3
√

1− 3z +O(1− 3z). (23)

From the system of equations (11)-(18) we are able to count the floating values of functionsfi atz0 = 1
3

for any i = 1, ..., 8. We may also take the differential of each equation and solve it with respect to the
value off ′i at z0 = 1

3
(v). After numerical computation (20.000 steps) we obtain the following values

(rounded to five digits) for the most interesting for us functionf8 = fTGrz .

Lemma 17

fTGrz
(z) ≈ 0.31099− 1.05449

√
1− 3z +O(1− 3z). (24)

From the above it follows that

Theorem 18 The density of truth of the logicGrz≤3(1) is about 60.88%.

Proof. From Lemma16and17we have:

µ(Grz≤3(1)) ≈ −1.05449
−√3

≈ 0.6088 .

2.
(v) Becausez0 = 1

3
is an algebraical singularity, to count the differential we have to substitute:

√
1− 3z := t.
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6 Counting the density of S5

The case ofS5 logic is even more complicated than in Grzegorczyk’s one. There is no nice estimation
of its density with the one exception of trivial logic(vi) . The only thing we can do is counting the floating
value of its density. To do this let us consider the following system of equations corresponding to Table2.

f1 = (f8f1 + f3(f1 + f2))z + z, (25)

f2 = (f8f2 + f1 + f2 + f6 + f7)z, (26)

f3 = (f1(f2 + f3 + f4 + f7) + f5(f3 + f4) + f6(f3 + f7) + f8f3)z, (27)

f4 = (f6(f2 + f4) + f8f4 + f3 + f4 + f5)z, (28)

f5 = (f3(f4 + f5) + f6(f1 + f5) + f7(f1 + f2 + f4 + f5)+
+f8f5) z, (29)

f6 = (f3(f6 + f7) + f4(f1 + f2 + f6 + f7) + f5(f1 + f5) + f8f6)z, (30)

f7 = (f5(f2 + f7) + f8f7)z, (31)

f8 =
(
f1(f1 + f5 + f6) + f2(f1 + f2 + f3 + f4 + f5 + f6 + f7) + f2

3 +

+f4(f3 + f4 + f5) + f2
5 + f2

6 f7(f3 + f6 + f7) + f8fF + f8
)
z, (32)

where

f1 = fA1 , f2 = fA2 , f3 = fA3 , f4 = fA4 ,

f5 = fA5 , f6 = fB1 , f7 = fB2 , f8 = fTS5 .

We do not introduce new symbols for the generating functions for classes of formulas from the algebra
S5(1)≡, but of course they are different from the ones forGrz≤3(1)≡. The exception is the main function
fF . It is still defined by (23). By making the same approach as forGrz≤3(1) we may solve the system of
equations (25)-(32) numerically. The expansion of the functionf8 = fTS5 around its smallest singularity
z0 = 1

3 is the following:

Lemma 19

fTS5(z) ≈ 0.38156− 1.05320
√

1− 3z +O(1− 3z). (33)

Furthermore

Theorem 20 The density of truth of the logicS5(1) is about 60.81%.

Proof. From Lemma16and19we get:

µ(S5(1)) ≈ −1.05320
−√3

≈ 0.6081

2.

(vi) The trivial modal logicTriv is the one in which2p = p. Then in our caseGrz≤1(1) = Triv(1).
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7 Conclusions and open problems
First, let us compare the result from Theorem18 with the ones for the logicsGrz≤2(1) andGrz≤1(1).
In (11) it is shown that

µ(Grz≤2(1)) ≈ 61.27%

µ(Grz≤1(1)) =
1
10

(5 +
√

5) ≈ 72.36%

As we see the difference betweenµ(Grz≤2(1)) andµ(Grz≤3(1)) is not significant at all. On the
percentage basis, more than 99% of the tautologies ofGrz≤3(1) is also theGrz≤2(1) tautologies. It
seems to be very probable that for anyn > 1 the density of truth for logicGrz≤n(1) is above the60%.
To prove this, however, we have to deal with a quite complicated calculation. In (10) it is shown that for
anyn, the algebrasGrz≤n(1)/≡ have exactly2n elements. The appropriate system of equation consists
of 2n equations written in terms of2n generating functions. There is no obstacle to apply the Drmota-
Lalley-Woods Theorem13. Even if we are not able not count the density explicitly, we know that it exists.
From the inclusions (1) we conclude that:

µ(Grz(1)) < ... < µ(Grz≤n(1)) < µ(Grz≤n−1(1)) < ... < 60.88%. (34)

It would be desirable to prove that:
Conjecture 1

µ(Grz(1)) > 60%

In this place we should also raise the problem of the chosen language. Even if we have considered
language without the negation sign, it may be easily defined by∼ p := p→ 2p. This is possible because
in the algebraGrz≤n(1)/≡, the formula2p plays the role of the zero-element. On the other side, adding
the functor of negation to the considered language leads to obtaining a larger number of different classes
and much more complicated calculations. In the case ofS5(1) logic, enriching the language leads to
‘solving’ a sixteen-element algebra. This is because the universal model consists of one two-element
cluster, one point validatingp and one point not validatingp. Hence, the dual modal algebra consists of24

elements. In the case of extensions of Grzegorczyk’s logic, adding negation involves even more increase
of the number of classes. For example, the number of classes ofGrz≤2(1)/≡ (with negation) is26. For
details see (2), p. 272-275. Adding the functor of possibility involves exactly the same complications as
adding the negation. Let us notice, that there is no difficulty in changing the{→,∼,2} language into
{∧,∼,2} language or into{∨,∼,2} one.

Let us also notice that from the quantitative point of view, the logicsGrz≤3(1) andS5(1) do not
differ actually. Of course, it would be very interesting to check whether the same situation holds for a
larger number of variables. Such investigation is connected with counting the number of elements of
the n-generated universal models forS5 andGrz≤n logics. In this place we may only notice that the
needed numbers, although are finite, are incomparably larger than in the case of the one-generated models
considered in this paper.

Problem 1 Estimation of density of truthof Grz≤3(n) andS5(n).
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