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On the density of truth in modal logics

Zofia Kostrzycka

University of Technology
Luboszycka 3, 45-036 Opole, Poland
E-mail zkostrz@po.opole.pl

The aim of this paper is counting the probability that a random modal formula is a tautology. We exXaming
fragment of two modal logic85 and S4 over the language with one propositional variable. Any modal formula
written in such a language may be interpreted as a unary binary tree. As it is known, there are finitely many different
formulas written in one variable in the log85 and this is the key to count the proportion of tautologieS®famong

all formulas. Although the logi&4 does not have this property, there exist its normal extensions having finitely many
non-equivalent formulas.
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1 Introduction

Modal logic is a widely applicable method of reasoning for many areas of computer science. These areas
include artificial intelligence, database theory, distributed systems, programs verification and cryptogra-
phy theory (see for exampld)( (8)). Computer scientists have examined the difficulty of problems in
modal logic, such as satisfiability. Satisfiability determines whether a formula in a given logic is satisfi-
able. Our approach also concerns the satisfiable formulas but in a quite different way. We are interested in
counting the proportions of such formulas among all formulas of some given modal logic. The complexity
of this problem involves we analyze some well described fragments of modal logic.

This paper consists of two parts. The first one is an algebraical characterization of two modal algebras:
one-generate®5 algebra and one-generated algebra for Grzegorczyk’'s modal logic. We chose these
modal logics because they have good semantical properties. We are especially interested in their relational
semantic, which is known as Kripke frames and models. We start with analysis of the appropriate frame.
Then we characterize its algebraical counterpart, which is some modal a{¢eBsathe one-generated
modal algebra we mean the algebra obtained from one non-zero and non-unit element by closing it under
the operations. For details sé&).(

The second part is devoted to calculation of numbers of formulas being tautologies of the considered
logics. We are especially interested in asymptotic properties of the fractions of tautologiésbé ebme
logical calculus. LetT;,| be a number of tautologies of lengthof that calculus andlZ}, | be a number of
all formulas of that length. We define the dengity.) as:

() A structure2t = (A,N,U,—,1,0,1) is a modal algebra if: (1JA4,N,U, —,0,1) is a Boolean algebra, and (2)is a unary
operator that satisfies (I1) = 1 and (i) [(a N b) = I(a) N I(b) fora,b € A.
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w(L) = lim 1Tl

If the limit exists, then it is the probability that a random formula is a tautology and is cadlesity
of truth. This paper is continuation of research concerningdimesity of truthin different logics. Until
now, thedensity of trutifor classical (and intuitionistic) logic of implication of one and two variables are
known (see15),(9)) as well as thelensityof implicational-negational fragments of that calculus with one
variable (se€18),(13)). There are also many results concerningdaesity of truthof classical logic with
the connectives of conjunction, disjunction and negation. For example3jsaed €). Regarding modal
logics, there is made only a rough estimation of deasity of trutifor Grzegorczyk’s logic. It is proved
in (11) that

34.672% < pu(Grz) < 61.27%

In this paper we significantly improve the above estimation and compare this result with the one for the
logic S5. The methods described i8)( (6) and 5) will be used.

2 Normal extensions of S4 modal logic. Modal logic S5

Syntactically, the modal logi84 is obtained by adding to axioms of classical logic the following modal
formulas®(re) Op — p, (K) O(p — q) — (Op — Ogq), (tra) Op — OOp. The logicS4 is defined
as a set of all consequences of new axioms by modus ponens, substitution and neceSRitatrores.
The last one can be presented in the following schemef H Oa.

By a frame we mean a paF = (W, R) consisting of a nonempty s& and a binary relatiork on
W. The elements off/ are called points (or worlds) andRy is read asy is accessible fromx’. A
modal propositioridy is regarded to be true in a worldif ¢ is true in all the worlds alternative (being
in relation R) to x; Cy is true inx if ¢ is true at least in one alternative world. Concrete properties of
the alternativeness relation depends on the type of the modality under consideration.S=bldgie the
relation R should be reflexive and transitive. By we mean the set of successorseadnd byz | -the
set of its predecessors.

The Grzegorczyk logi&Grz is characterized as a normal extension of the Lewis calcsduby the
Grzegorczyk axiom(grz) O(O(p — Op) — p) — p.

Symbolically, the normal extension is written Btz = S4 @ (grz), where® means the closure under
modus ponens, substitution aRy;.

Semantically, th&xrz logic is characterized by the class of finite reflexive and transitive trees.

Recall, that by a tree we mean a rooted frggne (W, R) such that for every point € W, the set |
is finite and linearly ordered b. A frame§ = (W, R) is a rooted one if there is a world € W such
that for anyy € W, y # z, y € = 1. A transitive frame is rooted if there exists a paine W such that
foranyy e W,y € x 1.

(i) 54 Lewis modal logic is a super-system of the logics S1, S2 and S3 and a sub-system of S5. They were first defined in 1932 in
Lewis and Langford’s booSymbolic Logiand to axiomatize them, the authors used the functor of so-called strict implication.
For details se€?).
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In this section we examine normal extensions of Grzegorczyk’s logic obtained by adding to the set of
axioms new formulas. The considered in this section axiomatic extensions are uniformly connected with
depth of trees.

Definition 1 A frameg is of depthn < w if there is a chain of: points ing and no chain of more than
points exists irf.

Forn > 0, let J,, be an axiom saying that any strictly ascending partial-ordered sequence of points is
of lengthn at most. The form of the needed formulgsis well known (see2) p.42). They are defined
inductively as follow&":

Definition 2
Ji = <0pr — py,
Jn+1 - <>(Danrl/\ ~ Jn) — Pn+1-
We will consider the logic&rz=" = Grz & J,,. Let us notice that for any formulaif ¢ € Grz="

(that means is true in every world of the tree of depth), theny € Grz=""! (¢ is true in every world
of the tree of deptlv — 1). Hence the following inclusions hold:

Grz C ... C Grz=" C Grz=""! C ... ¢ Grz=? C Grz='. 1)

The Lewis modal logi@S5 is characterized as a normal extensiorBdfby the axiom:
(sym) p — <Op.

SemanticallyS5 is characterized by the class of reflexive symmetric and transitive frames. Such rela-
tion is an equivalence relation and in that case any two worlds are alternatives to each other.

Because the logicS5 andGrz are axiomatic extensions 8# logic then the following inclusions take
places:S4 C S5 andS4 C Grz.

The logicsS5 and Grz are however incomparable. The formyla:z) is not provable irS5 whereas
the formula(sym) is not a theorem o6irz.

3 One-generated fragments of Grz=* and S5

We will consider sef"{—:} of formulas built up from one propositional variabldy means of necessi-
tation and implication only.

p c F{_’vu}’

a— Be 0 iff e FIP) and g e FI70
Oa € FI70 iff o e P10

(i) The formulas/, are defined in the full language (with negation and the operator of possibility and with unrestricted number of
variables). In the language{—-7} we can find the analogous formulas. [t} the author considered the sequence of following
formulas defined inductivelyA; := p, Az, := OAan_1, A2nt1 := Aap—1 — Agp forn > 1. Itis shown that the formula
Aan+1 plays the same role as the formula.
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By a one-generated logic we mean the logic restricted to formulas built up from one variable. The
one-generated parts of logi€rz=> and S5, (over the language with~ and 0) will be represented
appropriately by the symbolgrz=3(1) andS5(1).

The simplest manner to characterize the Iogﬁé&f?’(l) and S5(1) is examining the appropriate
Tarski-Lindenbaum algebra@rz=3(1)/= andS5(1)/=. Let us introduce an equivalence relation on the
considered logics:

Definition3 o = fiffa — 8 € M and3 — a € M, where the symbdM stands forGrzf?’(l) or
S5(1).

In (10) the author gave a precise characterization of the quotient alg€ht&s" (1) /= for anyn > 1.
Forn = 3 as well as foiS5(1) /= we have:

Lemma 4 Both the algebra&irz=*(1)/= andS5(1)/= consist of the following eight equivalence classes:

A = [p]z Ay = [Dp]z

Az = [p— Opl= Ay = [Blp— 0Op)l=
As = A3 — Ay B, = Ay — Ag
B2 = A5 — A2 T = [p — p];

and are closed under the operatiorsandO.

Proof. For Grz=%(1)/= see [l0). The proof forS5 may be made by a mutual calculation or by
taking the advantage of canonical and universal frames. The universal ffgg€l) generated by one
variable consists of one two-point cluster and one reflexive point falsifyinglence the dual algebra
(which is in fact isomorphic to the Tarski-Lindenbaum algebra) has to bavelements. The classes
[pl=, [B(p — Op)]=, and[((p — Op) — O(p — Op)) — Op]= are atoms 085(1)/=. For details we
refer the reader t@). O

Let us notice, that the equivalence classes presented above, are not identical in the bothS5(dés of
andGrz=?(1) logics. They have only the same representant. To avoid misunderstanding, we propose to
mark the clas§” of tautologies 0fGrz=3(1) by Tg,.. and analogously fa85(1) - T'ss.

Observation 5 The operationg —, O} in the algebraGrz=?(1)/= can be displayed in Tabl&
Observation 6 The operation§—, O} in the algebraS5(1)/= can be displayed in Tabl2

The order forms the following lattice diagrams of the eight-elen@mt=3(1) /= andS5(1)/= modal
algebras, which are, in fact, eight-element Boolean cubes (see Higufée open circle stands for the
open element of the given algebra. An elemdris open if0A = A. Let us stress the main difference
between the investigated algebras: the classs open in the algebr@rz=3(1)/= whereas ir85(1)/=
- is not.

To give a satisfying characterization of the alge6ez=3(1) /- it is necessary to notice that it has two
non-trivial open filtergA5) and[A,). They determine two congruence relations@nz=3(1)/=. We
divide the considered algebra by them and in this manner obtain some identification of classes. Exactly,
we obtain the following two new quotient algebrdd, and A L.
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— Ay As As Ay As By By Tars O
Al TGT’Z A3 A3 AB TGrz TGrz A3 TGrz AQ
A2 TG’I"Z TG'rz TGTZ TGrz TGrz TG'r‘z TGrz TGrz AZ
As Ay A1 Tgre 45 As By By T | Aa
A4 Bl Bl TGTZ TGrz TGTZ Bl Bl TGTZ A4
As By By As As  Ter. B By  Ters | 45
By As Ay As Ay As  Tgr= Az Tgra | Az
Bs AS A5 TGr- AS AE) Tar: Tar: Tgr: A2
TGrz Al A2 A3 A4 AS Bl B2 TGTZ TG'rz

Tab. 1: Truth table forGrz=*(1)/=

— | Ay Ay A3 Ay As By By Tss | O
Ay | Tss A3 A3 A3 Tss Tss Az Tss | A
Ay | Tss Tss Tss Tss Tss Tss Tss Tss | Az
As | Ay Ay Tss As As By By Tss | Ay
Ay | Bi By Tss Tss Tss Bir By Tss | Ag
As | Bi By A3 A3 Tss Bi By Tss | A4
By | As Ay A3 Ay A5 Tss Az Tss | A
By | As A5 Tss As As Tss Tss Tss | Az
Tss | Ay Ay A3 Ay As By By Tss | Tss

Tab. 2: Truth table forS5(1)/=

Definition 7

ALy = Grz=*(1)/=/a,)
AL2 = GI’ZSS(l)/E/[A4)
Their diagrams are presented in Fig@re
There is some simple observation frofg);
Observation 8
AL, = Grz=%(1)/=
ALy = Grzgl(l)/E

Inthe algebr&5(1)/= there is only one open filtgA4). The new quotient algebrdlLs = S5(1)/=/1,)
is identical withAL-.

4 Counting formulas and generating functions

In this section we set up the way of counting formulas with the established length. We will consider the
setF,, C F{=P} of all formulas of lengthn.
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where

A=A1UB1, B:AQUBQ,
C:A3UA47 D:ASUTGTZ7
AB=AUB, CD=CUD

Fig. 2: Diagram ofAL; andAL-

Definition 9 By |¢| we mean the length of formutawhich is the total number of occurrences of propo-
sitional variablep in the formula, including the implication and the sign of necessity operator. Formally

lp| = 1,
lp— | = |o[+ [l +1, (2)
8¢l = |l +1.

Definition 10 By F,, we mean the set of formulas frafi %} of lengthn.

We will also consider some appropriate subclassds,ofFor example if we have a classe F{—7}
thenA4,, = F,, N A.

Definition 11 By |A,| we mean the number of formulas from the cldgs
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The main tool for dealing with asymptotics of sequences of numbergesrerating functionsA nice
exposition of this method can be found [k6f and 5).

Lemma 12 The generating functiofiz for the numbersF, | is

1—=z (z+1)(1-32)

fr(x) =5 - 5 . 3)
Proof. It is easy to observe that the generating functfgnfor the numbersF,,| is the one for unary
binary trees (se¢f, p.65). |

Suppose, we have a system of non-linear equatigns ®,(z, y1, ...y ) for 1 < j < m, where any
y; = > oa;2". The following result known as Drmota- Lalley -Woods theorem (&eThm. 8.13,
p.71) is of great |mportance in the both cases of solving the system explicitly or implicitly.

Theorem 13 Consider a nonlinear polynomial system, defined by a set of equations
{ﬂ):(bj(zvyla---aym)L 1<j<m
satisfying the following properties:
1. a-properness® is a contraction, i.e. satisfies the Lipschitz condition

d(q)(yh "°7y’m)7 q)(ylla 7y'/m)) < Kd((yh -~-73/m)7 (y/17 ﬁU;n))» K <1

2. a-positivity: all terms of the serieB; (7’) are > 0.

3. a-irreducibility: the dependency graph of the algebraic system is builthovertices: 1,2,...,m;
there is an edge from a vertéxto a vertex; if y; appears ing,. The algebraic system is an
irreducible if its dependency graph is strongly connected.

4. a-aperiodicity: z (not 2% or 23...) is the right variable, that means for eagh there exist three
monomials:®, z?, andz¢ such that — ¢ andc — a are relatively prime.

Then
1. All component solutiong have the same radius of convergepce oc.

2. There exist functions; analytic at the origin such that
yi =hij(V1=2/p), (z—p7). 4)

3. All other dominant singularities are of the fopmw with w being a root of unity.

4. If the system is a-aperiodic then @l havep as unique dominant singularity. In that case, the
coefficients admit a complete asymptotic expansion of the form:

[2"y;j(z) ~ p~" den_l_k/z . (5)

k>1
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From ) there is a simple transition by the so called transfer lemma f#@)mt¢ a formula defining
the value of the coefficienfs™]y;(z). So, the a-aperiodicity of a system of equations is a very desirable
property. The application of the above theorem will proceed in the following way. Suppose, we have two
functionsf; andfr enumerating tautologies and all formulas of some logic. Suppose, they have the same
dominant singularity and there are the suitable constamis a», 81, B2 such that:

fr(z) =o1 = Biv/1—2/p+O(1—2/p), (6)
fr(z) = a2 = Pa/1—=2/p+ O(1 - 2/p). )

Then thedensity of truth(probability that a random formula is a tautology) is given by:
w(T) = lim /() _ B (8)

n—oo [27] fr(z)  Ba

Let us notice that the limi(8) exists in the case of a-aperiodic system of equations. The lack of this
property involves the limit does not exist (see for exam@l®) Such situation is considered idd)
and (14) where the authors investigate the existence of density of the purely equivalential fragments of
classical and intuitionistic logics.

5 Counting the density of Grz=*

At the begining of this section we quote (without a proof) the main generating functions for the classes of
formulas from the algebrasL; and AL,. From [11) we have):

Lemma 14 The generating functiongsz and fop for the numbersAB,, | and|CD,,| are

zf(z)— 1424+ X

fan(z) = e ©)
fen(s) = Zf(z>+212_2_X7 (10)
where

X = a2+ (1—-2z2—-f(2)2
For simplicity we have written this function in the term of functjoriWe will repeat it to the other one.

Proof. See the proof of Lemma 8 frord1).
O

Lemma 15 The generating functioffi- for the numbersC,, | is

o) = T4l X+1\/ Y T+4U S TOHATU+R
RV 2V oA T T3 Ty 4X 2

where

(V) There is a small change in the present approach (actually, we have changed the way of counting length of formula), hence there
are some differences between the functions presented above and those oné&g)frdime(method of determining them is exactly
the same.
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= 3z f/W +/—4(522)3 + W2,
9 27
z%—%ﬁ+gTU+YﬁR%—ZQT%mr+DUﬁBL
= 8(-1+ 1+ f~fap)z+ A+ (=14 f)fap)e® + (1 +2(1+ ) fap)?’) ,
Yy T w S
021/324 422 322 Y’
S = U?—thf—gTR
T = —-3+4+z2z+32f—-2z2fap,
U = —3+(243f—-3fap)z+ 2+ f+3ffap)z>.
For simplicity we have omitted in the above function the argurt@reind have writtery and f 4 5 instead
of f(z) and fap(z).
Proof. See the proof of Lemma 10 froni.J).
As we see the generating functions for the cl@ssis really complicated (to determine it we have to
solve a four-degree equation). Because it is not essential for the paper we do not quote here the functions

fa fs and fp. For the whole algebr&rz=3(1)/= we would have to solve equation of eight degree.
From Tablellwe obtain the system of the following equations:

S
I

i = (fsfi+fs(fi+f2))z+2 (11)
foo = (shat i+ ot fo+ fr)z (12)
f3 = (Ailfa+ fa+ fat fr) + fs(fs + fa) + fo(fs + f7) + fsf3)z, (13)
fo = (fe(fo+ fa) + fafa + f3+ fa)z, (14)
fs = (fs(fa+fs)+ fo(fr+ fs)+ fr(fr+ fot+ fa+ f5)+

+fafs + f5) 2, (15)
fo = (fa(fe+ fr)+ fa(fi + fo+ fo + fr) + fs(f1 + f5) + fs fe)z, (16)
fr = (fs(fat f2) + fafr)z, (17)
fs = (Ah+ftfo)+ (it fatfatfatfs+ fo+ fr)+ 5+

+fa(fs+ fat f5) + f2 + [ fr(fs + fo + f2) + fafr + fs) 2, (18)

where
lefAla f2:fA27 f3:fA37 f4:fA47
fs=fas, foe=1I B [fr=1F B, f3=fren.

Furthermore, we have that:

fr = fit+fotfatfatfs+fo+ fr+fs, (19)
fot+fr = fB (20)
fi+tfe = fa (21)

fs+fs = fo (22)
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Application of (19)-(22)into (11)-(18) gives us a simpler system:
i = (fafi+ f3(fi+ f2)z+ 2,

fa = (fsfe+ fap)z,

f3 = (hlfa+ fo+ fo) + fsfo + fo(fs + fr) + fsf3)z,

fo = (fe(fo+ fa) + fafa + fo)z,

fs = (fs(fat+ f5) + fe(fr+ f5) + fa(fr + fo+ fa+ f5)+
+fsfs + f5) 2,

Jfo = (fs(fo+ fr)+ fafap + fs(f1 + f5) + fafe)z,

fr = (fsfe+ fsfr)z,

fs = (filfa+fs)+ falfr— fs) + f5+
+fa(fo + f5) + 2+ fofr(fs + fo + f1) + fafr + f3) 2.
Of course, there is possible further simplification of the above system of equations. Anyway, this
also leads to 8-degree equation with very complex functions. Even with taking the advantige of

Mathematicapackage the needed calculations are not feasible. Hence, we decide to solve the system
numerically.

Let us notice that the system of equatioh$){(18) is a-proper, a-positive, a-irreducible and a-aperiodic.
So, itis possible to apply the Drmota-Lalley-Woods Theodé&inFurthermore, for any= 1, ..., 8 all the
functionsf; have the same dominant singularity = % and there exist their expansions arougdn the
form:

fi=a; +b;v1—-3z+ 0(1 — 32)

From equation3) defining the main generating function, after a simple calculation we obtain:

Lemma 16

fr(z) = 1-V3/1-32+0(1 - 32). (23)
From the system of equatiorikl)-(18) we are able to count the floating values of functignatzy = %
foranyi = 1,...,8. We may also take the differential of each equation and solve it with respect to the
value of f/ at zyp = % ), After numerical computation (20.000 steps) we obtain the following values
(rounded to five digits) for the most interesting for us functfan= fr,..

Lemma 17
fre,.(2) = 0.31099 — 1.05449v/1 — 3z + O(1 — 32). (24)
From the above it follows that
Theorem 18 The density of truth of the logiGrz=3(1) is about 60.88%.

Proof. From Lemmal6 and17 we have:

 —1.05449

w(Grz=3(1)) ~ 5 ~ 0.6088

V) Becauseg = % is an algebraical singularity, to count the differential we have to substidie: 3z := t.
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6 Counting the density of S5

The case 085 logic is even more complicated than in Grzegorczyk's one. There is no nice estimation
of its density with the one exception of trivial lo§f¢. The only thing we can do is counting the floating
value of its density. To do this let us consider the following system of equations corresponding 18.Table

f (fsfi+ fs(fi + f2))z + 2, (25)
fo = (fsfot+fi+fot fo+ fr)z, (26)
fs = (filfa+ fa+ fat+ f2) + fs(fs + fa) + fo(f3 + f7) + fsf3)z, (27)
fo = (fe(fo+ fo)+ fafa+ fs+ fa+ f5)z, (28)
fs = (fs(fat+fs)+fe(fi+ fs) + fr(fr+ fat fat f5)+

+fsfs) 2, (29)
fo = (fs(fo+ fr)+ fa(fr+ fo+ fo + f7) + [s(fr + f5) + fsfo)z, (30)
fr = (fs(fat+ fr) + fafr)z, (31)
fs = (Ah+f+fe)+f(fitftfitfatfs+fo+ fr)+fi+

+fa(fs+ fa+ f5)+ 2+ fefe(fs+ fo + fr) + fafr + fs) 2, (32)

where

fi=Ffa, fo=1Ffay, [f3=TFas, [fo=fas,
fs=fas, foe=1fB, [fr=1IBy [8= fres-

We do not introduce new symbols for the generating functions for classes of formulas from the algebra
S5(1)=, but of course they are different from the ones@rz=*(1)~. The exception is the main function
fr. Itis still defined by 23). By making the same approach as €rz=>(1) we may solve the system of
equations25)-(32) numerically. The expansion of the functign = fr.. around its smallest singularity
zo = 3 is the following:

Lemma 19
fre:(2) =~ 0.38156 — 1.05320v/1 — 3z + O(1 — 32). (33)
Furthermore
Theorem 20 The density of truth of the logi85(1) is about 60.81%.
Proof. From Lemmal6 and19 we get:

—1. 2
L(85(1)) ~ —299320 4 6os1

=

(V) The trivial modal logicTriv is the one in whictdp = p. Then in our cas&rz='(1) = Triv(1).
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7 Conclusions and open problems

First, let us compare the result from Theor&Bwith the ones for the logic&rz=?(1) andGrz='(1).
In (12) it is shown that

w(Grz=?(1)) ~ 61.27%

J(Grz<l (1)) = %(5 +VB) ~ T2.36%
As we see the difference betwepGrz=?(1)) and (Grz=3(1)) is not significant at all. On the
percentage basis, more than 99% of the tautologigSef=*(1) is also theGrz=?(1) tautologies. It
seems to be very probable that for any> 1 the density of truth for logi€Grz="(1) is above thes0%.
To prove this, however, we have to deal with a quite complicated calculatiodQ)iit (s shown that for
anyn, the algebra&irz="(1)/= have exactl2" elements. The appropriate system of equation consists
of 2" equations written in terms &f* generating functions. There is no obstacle to apply the Drmota-
Lalley-Woods Theorerh3. Even if we are not able not count the density explicitly, we know that it exists.
From the inclusionsl) we conclude that:

u(Grz(1)) < ... < u(Grz="(1)) < u(Grz=""1(1)) < ... < 60.88%. (34)

It would be desirable to prove that:
Conjecture 1

w(Grz(1)) > 60%

In this place we should also raise the problem of the chosen language. Even if we have considered
language without the negation sign, it may be easily defined lpy:= p — Op. This is possible because
in the aIgebreGrzé"(l)/;, the formuladp plays the role of the zero-element. On the other side, adding
the functor of negation to the considered language leads to obtaining a larger number of different classes
and much more complicated calculations. In the cas85fl) logic, enriching the language leads to
‘solving’ a sixteen-element algebra. This is because the universal model consists of one two-element
cluster, one point validating and one point not validating Hence, the dual modal algebra consist8“of
elements. In the case of extensions of Grzegorczyk’s logic, adding negation involves even more increase
of the number of classes. For example, the number of class8s=f?(1)/= (with negation) i26. For
details see2), p. 272-275. Adding the functor of possibility involves exactly the same complications as
adding the negation. Let us notice, that there is no difficulty in changing-the~, O} language into
{A, ~, O} language or intd vV, ~, O} one.

Let us also notice that from the quantitative point of view, the logiasz=*(1) and S5(1) do not
differ actually. Of course, it would be very interesting to check whether the same situation holds for a
larger number of variables. Such investigation is connected with counting the number of elements of
the n-generated universal models §5 and Grz=" logics. In this place we may only notice that the
needed numbers, although are finite, are incomparably larger than in the case of the one-generated models
considered in this paper.

Problem 1 Estimation of density of trutrof Grz=*(n) andS5(n).
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