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Abstract

This paper is an attempt to count the proportion of tautologies of some
intermediate logics among all formulas. Our interest concentrates espe-
cially on Dummett’s and Medvedev’s logics and their {→,∨,¬} fragments
over language with one propositional variable.

1 Introduction

Let L be some logical calculus. Let |Tn| be a number of tautologies of length n
of that calculus and |Fn| be a number of all formulas of that length. We define
the density µ(L) as:

µ(L) = lim
n→∞

|Tn|
|Fn|

The number µ(L) if exists, is an asymptotic probability of finding a tautology
among all formulas.
This paper is a continuation of research concerning the density of truth in differ-
ent logics. Until now, we were concentrated mostly on classical and intuitionistic
logics. Especially, its {→} and {→,¬} fragments with one variable were inves-
tigated (see [5], [9]). It is well known fact that implicational fragments of one
variable of intuitionistic and classical logics are the same. Moreover, it is easy
to observe that implicational-negational and monadic fragments of every inter-
mediate logic is identical with that same fragment of intuitionistic one. It is
already known (see [3]) that the density of that logic (and each intermediate as
well) is more than 39%. We also know the density of implicational-negational
and monadic fragment of classical logic. It is about 42%. That gives a very
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large amount of intuitionistic tautologies among classical ones in the language
consisting of signs of {→,¬} and one propositional variable.
It is natural to wish to investigate some important intermediate logics with
respect to their densities. We will concentrate our attention on two of them:
the Medvedev logic and Dummett’s one. To distinguish them we will take
their monadic fragments over reacher language consisting of operators {→,∨,¬}.
Such fragments have models obtained by a simple modification of the Rieger-
Nishimura lattice.

2 Intermediate logics

We consider the set of all formulas F built up from one variable p by means of
operations {→,∨,¬}. Our starting point is Medvedev’s logic ML of finite prob-
lems. As it is known it is not finitely axiomatizable and might be characterized
with help of Kreisel and Putnam’s logic [4]. Recall that the logic KP of Kreisel
and Putnam is the least intermediate logic with

(¬α→ (β ∨ γ)) → ((¬α→ β) ∨ (¬α→ γ)) (1)

Let F {¬} be the set of formulas defined as follows:

¬α ∈ F {¬} ⇔ α ∈ F ; (2)
α, β ∈ F {¬} ⇒ α→ β, α ∨ β ∈ F {¬}. (3)

The characterization is the following:

α ∈ML ⇔ (e(α) ∈ KP, for every substitution e : F → F {¬})

Clearly KP ⊂ML. The following formula

((¬¬α→ α) → (α ∨ ¬α)) → (¬¬α ∨ ¬α) (4)

called Scott’s law, belongs to ML and does not belong to KP , see [8].
Hence, the Lindenbaum algebra for the monadic fragment of ML is obtained by
dividing the Rieger- Nishimura lattice by the filter generated just by the Scott’s
law. We will denote this algebra by M. It is consisted of 9 following equivalence
classes:

A = [¬(p→ p)]≡,
B = [p]≡,
C = [¬p]≡,
D = [p ∨ ¬p]≡,
E = [¬¬p]≡,
G = [¬¬p ∨ (p ∨ ¬p)]≡,
H = [¬¬p→ p]≡,
J = [(¬¬p ∨ (p ∨ ¬p)) ∨ (¬¬p→ p)]≡,
M = [p→ p]≡,
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and its diagram is as below:
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Figure 1.

3 Counting formulas and generating functions

In this section we set up the way of counting formulas with the established
length.
way:

l(p) = 1
l(¬φ) = 1 + l(φ)

l(φ→ ψ) = l(φ) + l(ψ) + 1
l(φ ∨ ψ) = l(φ) + l(ψ) + 1

length n.
We will also consider some appropriate subclasses of Fn. For example if we have
a class A ⊂ F then An = Fn ∩A.
class An.
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Lemma 1 The number |Fn| of formulas from Fn is given by the recursion:

|F0| = 0, |F1| = 1, (5)

|Fn| = |Fn−1|+ 2
n−2∑
i=1

|Fi||Fn−i−1|. (6)

Proof. Any formula of length n for n > 1 is either a negation of some formula
of length n−1 for which the fragment |Fn−1| corresponds, or an implication (or
disjunction) between some pairs of formulas of lengths i and n−i−1, respectively.
Therefore the total number of such formulas is 2

∑n−2
i=1 |Fi||Fn−i−1|. �

The main tool for dealing with asymptotics of sequences of numbers are gener-
ating functions, see for example [7].
Let A = (A0, A1, A2, . . .) be a sequence of real numbers. It is in one-to-one
correspondence to the formal power series

∑∞
n=0Anz

n. Moreover, considering
z as a complex variable, this series, as it is known from the theory of analytic
functions, converges uniformly to a function fA(z) in some open disc {z ∈ C :
|z| < R}, where R ≥ 0 is called its radius of convergence. So, with the sequence
A we can associate a complex function fA(z), called the ordinary generating
function for A, defined in a neighborhood of 0. This correspondence is one-
to-one again (unless R = 0), since the expansion of a complex function f(z),
analytic in a neighborhood of z0, into a power series

∑∞
n=0An(z−z0)n is unique,

and moreover, this series is the Taylor series, given by

An =
1
n!
dnf

dzn
(z0). (7)

The above formula is a recursive one. To find a nonrecursive formula for An we
take advantage from the following result due to Szegö [6] [Thm. 8.4], see also [7]
[Thm. 5.3.2]. We need the following much simpler version of the Szegö lemma.

Lemma 2 Let v(z) be analytic in |z| < 1 with z = 1 being the only singularity
at the circle |z| = 1. If v(z) in the vicinity of z = 1 has an expansion of the
form

v(z) =
∑
p≥0

vp(1− z)
p
2 , (8)

where p > 0, and the branch chosen above for the expansion equals v(0) for
z = 0, then

[zn]{v(z)} = v1

(
1/2
n

)
(−1)n +O(n−2). (9)

The symbol [zn]{v(z)} stands for the coefficient of zn in the exponential series
expansion of v(z).
Now, we quote (without proof)some theorems which have appeared in [3]. They
are the main tools for finding limits of the fraction an

bn
when generating functions

for sequences an and bn satisfy conditions of simplified Szegö Lemma 2.
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Lemma 3 Suppose two functions v(z) and w(z) satisfy assumptions of simpli-
fied Szegö theorem (Lemma 2) i.e. both v and w are analytic in |z| < 1 with
z = 1 being the only singularity at the circle |z| = 1. Both v(z) and w(z) in the
vicinity of z = 1 have expansions of the form

v(z) =
∑
p≥0

vp(1− z)p/2,

w(z) =
∑
p≥0

wp(1− z)p/2,

then the limit of [zn]{v(z)}
[zn]{w(z)} exists and is given by the formula:

lim
n→∞

[zn]{v(z)}
[zn]{w(z)}

=
v1
w1

Theorem 4 Suppose two functions v(z) and w(z) satisfy assumptions of sim-
plified Szegö theorem (Lemma 2) i.e. both v and w are analytic in |z| < 1 with
z = 1 being the only singularity at the circle |z| = 1. Both v(z) and w(z) in the
vicinity of z = 1 have expansions of the form

v(z) =
∑
p≥0

vp(1− z)p/2,

w(z) =
∑
p≥0

wp(1− z)p/2,

Suppose we have functions ṽ and w̃ satisfying ṽ(
√

1− z) = v(z) and w̃(
√

1− z) =
w(z) then the limit of [zn]{v(z)}

[zn]{w(z)} exists and is given by the formula:

lim
n→∞

[zn]{v(z)}
[zn]{w(z)}

=
(ṽ)′(0)
(w̃)′(0)

(10)

4 Gluing of classes

In this section we do some preparations for determining the generating function
for the class of tautologies of ML. First, we determine the generating function
for the sequence of numbers |Fn|.

Lemma 5 The generating function f for the numbers |Fn| is the following:

f(z) =
1− z

4
−
√
z2 − 10z + 1

4
. (11)

Proof. The recurrence formula |Fn| = |Fn−1|+2
∑n−2

i=1 |Fi||Fn−i−1| becomes the
equality

f(z) = zf(z) + 2f2(z) + z (12)

5



since the recursion fragment
∑n−2

i=1 |Fi||Fn−i−1| corresponds exactly to multipli-
cation of power series. The term |Fn−1| corresponds to the function zf(z). The
linear term z corresponds to the first non-zero coefficient in the power series of
f . Solving the equation we get two possible solutions: f(z) = 1−z

4 −
√

z2−10z+1
4

or f(z) = 1−z
4 +

√
z2−10z+1

4 . We choose the first one, since it corresponds to the
boundary condition f(0) = 0 (see equation (5)). �

To find the generating functions for other classes of formulas it will be useful
to have written the truth-table for the operations {→,∨,¬} of the algebra M
presented in Figure 1.

→ A B C D E G H J M ¬
A M M M M M M M M M M
B C M C M M M M M M C
C E E M M E M M M M E
D A E C M E M M M M A
E C H C H M M H M M C
G A B C H E M H M M A
H A E C G E G M M M A
J A B C D E G H M M A
M A B C D E G H J M A

Table 1.

∨ A B C D E G H J M
A A B C D E G H J M
B B B D D E G H J M
C C D C D G G H J M
D D D D D G G H J M
E E E G G E G J J M
G G G G G G G J J M
H H H H H J J H J M
J J J J J J J J J M
M M M M M M M M M M

Table 2.

From these tables we can read the way of creating each tautology and any
formula from any other class. For example the formulas from the class A are
built up as implications between formulas from the classes D,G,H, J,M and A,
negations of formulas from D,G,H, J,M and disjunctions of formulas from class
A. But if we want to count the quantities of that formulas we would have to
know the way of creating formulas from the other needed classes. This provides
to obtaining a system of nine recurrent equations and consequently a system
of nine non-linear equations with nine unknown generating functions. To avoid
such complication we will consider step by step much simpler algebras obtained
from the main quotient algebra M.
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First let us take the filter {J,M} and consider the new algebra M/{J,M}. Its
diagram and the appropriate truth - tables are presented below.
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Figure 2

where

JM = J ∪M

We will repeat this abbreviation for other classes.

→ A B C D E G H JM ¬
A JM JM JM JM JM JM JM JM JM
B C JM C JM JM JM JM JM C
C E E JM JM E JM JM JM E
D A E C JM E JM JM JM A
E C H C H JM JM H JM C
G A B C H E JM H JM A
H A E C G E G JM JM A
JM A B C D E G H JM A

Table 3.

∨ A B C D E G H JM
A A B C D E G H JM
B B B D D E G H JM
C C D C D G G H JM
D D D D D G G H JM
E E E G G E G JM JM
G G G G G G G JM JM
H H H H H JM JM H JM
JM JM JM JM JM JM JM JM JM
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Table 4.

Now, we take the filter {H,J,M} and consider the new algebra M/{H,J,M}. Its
diagram and the appropriate truth - tables are the following:

@
@

@
@

@

@
@

@
@

@�
�

�
�

�

s
s

�
�

�
�

�

s
s

s
DG

CBE

A

HJM

Figure 3.

→ A BE C DG HJM ¬
A HJM HJM HJM HJM HJM HJM
BE C HJM C HJM HJM C
C BE BE HJM HJM HJM BE
DG A BE C HJM HJM A
HJM A BE C DG HJM A

Table 5.

∨ A BE C DG HJM
A A BE C DG HJM
BE BE BE DG DG HJM
C C DG C DG HJM
DG DG DG DG DG HJM
HJM HJM HJM HJM HJM HJM

Table 6.

We also divide the algebra M by the filter L = {G, J,M}:
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The truth tables are the following:

→ A B C DH E L ¬
A L L L L L L L
B C L C L L L C
C E E L L E L E
DH A E C L E L A
E C DH C DH L L C
L A B C DH E L A

Table 7.

∨ A B C DH E L
A A B C DH E L
B B B DH DH E L
C C DH C DH L L
DH DH DH DH DH L L
E E E L L E L
L L L L L L L

Table 8.

Lemma 6 The matrix described in Tables 7 and 8 is a matrix for the linear
Dummett’s logic of implication, disjunction and negation with one variable 1.

Proof. Proof of that fact is poorly semantical, analogous to the one of Lemma
7 in [3].
The next divisions are the following - we divide the algebra M by the filters
{E,G, J,M} and K = {D,G,H, J,M} and obtain:

1Linear calculus LC was studied in [1] by Dummett. Syntactically it is obtained by adding
the axiom (p→ q) ∨ (q → p) to axioms of intuitionistic logic.
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The operations {→,∨,¬} in the new algebras are given by the following truth-
tables:

→ AC BDH EGJM ¬
AC EGJM EGJM EGJM EGJM
BDH AC EGJM EGJM AC
EGJM AC BDH EGJM AC

Table 9.
∨ AC BDH EGJM
AC AC BDH EGJM
BDH BDH BDH EGJM
EGJM EGJM EGJM EGJM

Table 10.
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→ A BE C K ¬
A K K K K K
BE C K C K C
C BE BE K K BE
K A BE C K A

∨ A BE C K
A A BE C K
BE BE BE K K
C C K C K
K K K K K

Table 11. Table 12.

As we can observe, the first truth table describes operations in the Gödel 3
valued matrix, while the second one is a matrix of all valuations associated with
the standard classical logic of one variable.

Lemma 7 The matrix described in Tables 11 and 12 is a matrix for the classical
logic of implication, disjunction and negation with one variable.

Proof. Proof of that fact is analogous to the one of Lemma 12 in [3]. �

The last two divisions are the following: we take two filtersN = {C,D,G,H, J,M}
and P = {B,D,E,G,H, J,M}. The new quotient algebras M/N and M/P

have the following diagrams:

r

r

ABE

N

r

r

AC

P

Figure 7. Figure 8.

The operations {→,∨,¬} are characterized by the following truth-tables:

→ ABE N ¬
ABE N N N
N ABE N ABE

→ ABE N
ABE ABE N
N N N

Table 13. Table 14.

→ AC P ¬
AC P P P
P AC P AC

→ AC P
AC AC P
P P P

Table 15. Table 16.
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5 Calculating generating functions

Now,we are ready to deal with generating functions. We start with analyzing
the algebra M/N .

Lemma 8 The numbers |ABEn| are given by the following mutual recursions:

|ABE0| = 0, |ABE1| = 1, (13)

|ABEn| =
n−2∑
i=1

|Fi||ABEn−i−1|+ |Nn−1|, (14)

Proof. From Tables 13 and 14 we see that formulas from class ABE can be
obtained as implications of formulas from classes N and ABE - this gives us
the recurrence

∑n−2
i=1 |Ni||ABEn−i−1|, disjunctions of formulas from class ABE

- hence we have
∑n−2

i=1 |ABEi||ABEn−i−1|, or negations of ones from the class
N , which gives the part |Nn−1|. Hence we have:

|ABEn| =
n−2∑
i=1

|Ni||ABEn−i−1|+
n−2∑
i=1

|ABEi||ABEn−i−1|+ |Nn−1|.

From disjointness of considered classes we have |ABEi|+ |Ni| = |Fi| and hence
we have (14). Because p ∈ ABE then we have (13). �

Lemma 9 The generating function fABE for sequence of numbers |ABEn| is:

fABE(z) =
zf(z) + z

1− f(z) + z
(15)

where f(z) =
1− z

4
−
√
z2 − 10z + 1

4

Proof. The part
∑n−2

i=1 |Fi||ABEn−i−1| of the recurrence (14) corresponds to
multiplication of power series and then gives multiplication of generating func-
tions: f(z)fABE(z). The term |Nn−1| = |Fi| − |ABEi| corresponds to the func-
tion z(f(z)− fABE(z)). Hence the recurrence (14) gives the following equality
between the appropriate generating functions:

fABE(z) = f(z)fABE(z) + z(f(z)− fABE(z)) + z (16)

The linear term z in (16) corresponds to the first non-zero coefficient in the
power series of fABE . A basic transformation gives us (15). �
Analogously we determine the appropriate recurrence and generating function
for the numbers |ACn|.

Lemma 10 The numbers |ACn| are given by the following mutual recursions:

|AC0| = |AC1| = 0, |AC2| = 1, (17)

|ACn| =
n−2∑
i=1

|Fi||ACn−i−1|+ |Pn−1|, (18)
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Proof. The above recurrence follows from Tables 15 and 16 analogously to the
one in Lemma 8. �

Lemma 11 The generating function fAC for sequence of numbers |ACn| is the
following:

fAC(z) =
zf(z)

1− f(z) + z
(19)

where f(z) =
1− z

4
−
√
z2 − 10z + 1

4

Proof. The recurrence (18) can be translated into following equation:

fAC(z) = f(z)fAC(z) + z(f(z)− fAC(z)) (20)

which gives us (19). There is no linear term in (20) because p 6∈ AC. �

In the same manner we can determine generating functions connected with other
classes of formulas. For simplicity of notation we will omit the argument (z) in
all the functions which will arrive hereafter. Now, we determine the generating
function for the class of classical tautologies K.

Lemma 12 The generating function fK for the numbers |Kn| is the following:

fK =
1
16

(
4− 4z +

12f(−1 + f + z) + 12z
−1 + f − z

− S

)
, (21)

where

f(z) =
1− z

4
−
√
z2 − 10z + 1

4

S =
√

2
√

8− z + 20z2 + 31z3 + 8z4 + f(−15− 31z − z2 + 15z3)
1− f + z

.

Proof. From Tables 11 and 12 we have the following recurrence for the numbers
|An| hold:

|A0| = |A1| = |A2| = |A3| = 0, |A4| = 1, (22)

|An| =
n−2∑
i=1

|Ki||An−i−1|+
n−2∑
i=1

|Ai||An−i−1|+ |Kn−1|, (23)

This recurrence can be translated into equation:

fA = fKfA + f2
A + zfK (24)

with two unknown functions fA and fK .
From the other side, from definitions of classes AC, ABE and K we have:

fA = fAC + fK + fABE − f (25)

13



From the system of equations:{
(24)
(25)

we obtain the quadratic equation:

2f2
K + 3fK(fAC + fABE − f) + (fAC + fABE − f)2 − fAC − fABE + f = 0

After solving it with the boundary condition fK(0) = 0 and taking into consid-
eration the equalities (19), (15), (11) and intensive simplification we get (21).

�

The next important generating function is the one of class of linear tautologies
L (see Figure 4). To determine it we must first consider Figure 5 and determine
the generating function for the class of formulas BDH.

Lemma 13 The generating function fBDH for the sequence of numbers |BDHn|
is:

fBDH =
2z(1− f + z)

−3f − 5zf + z + 2
, (26)

where

f(z) =
1− z

4
−
√
z2 − 10z + 1

4

Proof. It follows easily from Tables 9 and 10 that the numbers |BDHn| are
given by the following recursion:

|BDH0| = 0, |BDH1| = 1,

|BDHn| =
n−2∑
i=1

|EGJMi||BDHn−i−1|+ 2
n−2∑
i=1

|BDHi||ACn−i−1|+

+
n−2∑
i=1

|BDHi||BDHn−i−1|. (27)

The above recurrence leads to the equality:

fBDH = fEGJMfBDH + 2fBDHfAC + f2
BDH + z (28)

From disjointness of the appropriate classes we have that:

fEGJM = f − fBDH − fAC . (29)

and after application (29) to the equation (28) we obtain as follows:

fBDH =
z

1− fAC − f
(30)

which after a suitable simplification gives us (26). �

The next needed function is the function fB . We take into consideration Figure
4.
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Lemma 14 The generating function fB for the sequence of numbers |Bn| is the
following:

fB =
12 + S + 4z + U − 16X − 16

√
−8z + (−1− 2f + Y +X)2

64
, (31)

where

f(z) =
1− z

4
−
√
z2 − 10z + 1

4

S =
√

2
√

8− z + 20z2 + 31z3 + 8z4 + f(−15− 31z − z2 + 15z3)
1− f + z

.

U =
−8z − f(12f − 2S) + 2(4− 4z2 − S(1 + z))

−1 + f − z

X =
2z(1− f + z)

−2− z + f(3 + 5z)

Y =
−14z − 58fz + 3(−4 + S − f(2 + S) + Sz + 4z2)

16(−1 + f − z)
(32)

Proof. From Tables 7 and 8 we get the following recurrence concerning the
numbers |Bn|:

|B0| = 0, |B1| = 1,

|Bn| =
n−2∑
i=1

|Li||Bn−i−1|+ 2
n−2∑
i=1

|Bi||An−i−1|+

+
n−2∑
i=1

|Bi||Bn−i−1|. (33)

The above recurrence leads to the equality:

fB = fLfB + 2fBfA + f2
B + z . (34)

We also have:

fL = fEGJM − fE , fEGJM = f − fBDH − fAC fE = fBE − fB ,

fBE = f − fAC − fK , fA = fAC + fK + fABE − f .

After a suitable substitution and simplification we get:

fL = fK + fB − fBDH . (35)

We apply (35) to (34) and after simplification obtain the following quadratic
equation:

2f2
B + fB(2fAC + 3fK + 2fABE − 2f − fBDH − 1) + z = 0. (36)

Solving (36) with the boundary condition fB(0) = 0 and a suitable substitution
of (19), (21), (15) and (26) give us (31). �
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Now, we are ready to determine the generating function of linear tautologies.
Let us take advantage of Lemma 14 and (35).

Corollary 15 The generating function fL for the sequence of numbers |Ln| is
the following:

fL =
1
64

(
28− 12z − 3S + U + 48X + 48

f(−1 + f + z) + z

−1 + f − z
−

16
√
−8z + (−1− 2f + Y +X)2

)
, (37)

where

f =
1− z

4
−
√
z2 − 10z + 1

4
,

S =
√

2
√

8− z + 20z2 + 31z3 + 8z4 + f(−15− 31z − z2 + 15z3)
1− f + z

, (38)

U =
−8z − f(12f − 2S) + 2(4− 4z2 − S(1 + z))

−1 + f − z
, (39)

X =
2z(1− f + z)

−2− z + f(3 + 5z)
, (40)

Y =
−14z − 58fz + 3(−4 + S − f(2 + S) + Sz + 4z2)

16(−1 + f − z)
. (41)

The next step will concern the lattice presented in Figure 3. We notice that:

Lemma 16 The generating function fDG for the numbers |DGn| is the follow-
ing:

fDG =
T

8(−1 + f − z)
∗

∗ (T + 16z)
−20 + S(1 + z − f) + z(6 + 4z) + f(30 + 50z)

(42)

where

f =
1− z

4
−
√
z2 − 10z + 1

4

S =
√

2
√

8− z + 20z2 + 31z3 + 8z4 + f(−15− 31z − z2 + 15z3)
1− f + z

T = −4 + S − 2z + Sz + 4z2 + f(6− S + 10z)

Proof. From Tables 5 and 6 we get the following recurrence concerning the
numbers |DGn|:

|DG0| = |DG1| = |DG2| = |DG3| = 0, |DG4| = 1,

|DGn| =
n−2∑
i=1

|HJMi||DGn−i−1|+ 2
n−2∑
i=1

(|Ai|+ |BEi|+ |Ci|)|DGn−i−1|+

16



+
n−2∑
i=1

|DGi||DGn−i−1|+ 2
n−2∑
i=1

|Ci||BEn−i−1|. (43)

The above recurrence gives the equality:

fDG = fHJMfDG + 2(fA + fBE + fC)fDG + f2
DG + 2fCfBE . (44)

Because fHJM = fK − fDG, fA + fBE + fC = f − fK , fC = f − fK − fABE and
fBE = f − fAC − fK then we obtain the following linear equation with respect
the function fDG:

fDG(2f − fK − 1) + 2(f − fK − fABE)(f − fAC − fK) = 0. (45)

This equation after suitable substitution and simplification give us (42). �

Now, we are very close to achieve the main goal of that paper. All that is left for
us to do, is to determine two generating functions - one connected with Figure
2 (we will choose fD) and the last one which is the generating function for the
class of tautologies of Medvedev’s calculus. Let us consider Figure 2.

Lemma 17 The generating function fD for the numbers |Dn| is the following:

fD =
1
4

(1− 2fAC − fL + fDG − 2fB−√
16(fABE − f + fK)fB + (−1 + 2fAC + fL − fDG + 2fB)2

)
(46)

where functions f, fABE , fAC , fK , fB , fL, fDG are defined by (11), (15), (19),
(21), (31), (37) and (42).

Proof. Tables 3 and 4 give us the following recurrence:

|D0| = |D1| = |D2| = |D3| = 0, |D4| = 1,

|Dn| = 2(
n−2∑
i=1

|Bi||Cn−i−1|+
n−2∑
i=1

|Di|(|An−i−1|+ |Cn−i−1|+ |Bn−i−1|)) +

n−2∑
i=1

|JMi||Dn−i−1|+
n−2∑
i=1

|Di||Dn−i−1|. (47)

This recurrence can be translated as follows:

fD = fJMfD + 2(fBfC + (fA + fC + fB)fD) + f2
D. (48)

We know also that fJM = fL−fDG+fD, fC = f−fK−fABE and fA+fC+fB =
fAC + fB .
Therefore we obtain the following quadratic equation with respect to the func-
tion fD:

2f2
D + fD(fL − fDG + 2(fAC + fB)− 1) + 2fB(f − fK − fABE) = 0. (49)
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After solving it with the condition fD(0) = 0 we get (46). For simplicity we
have expressed fD in terms of before determined generating functions. �

Now, we are prepare to determine the generating function characterizing tau-
tologies of Medvedev’s logic. To do that we choose the class Jn because it is the
one which distinguishes the algebras M and M/{JM}.

Lemma 18 The generating function fJ for the numbers |Jn| is the following:

fJ =
2(f − fBDH − fAC − fL − fD + fDG)(fK − fL − fD)

1 + fD − 2f + fL − fDG
(50)

where functions f, fAC , fK , fBDH , fL, fDG, fD are defined by (11), (19), (21),
(26), (37), (42) and (46).

Proof. Tables 1 and 2 give us the following recurrence:

|J0| = ... = |J8| = 0, |J9| = 1,

|Jn| =
n−2∑
i=1

|Mi||Jn−i−1|+ 2(
n−2∑
i=1

|Hi|(|En−i−1|+ |Gn−i−1|) +

n−2∑
i=1

|Ji|(|Fn−i−1 − |Jn−i−1| − |Mn−i−1|)) +
n−2∑
i=1

|Ji||Jn−i−1|. (51)

This recurrence can be translated as follows:

fJ = fMfJ + 2(fH(fE + fG) + fJ(f − fJ − fM )) + f2
J . (52)

After taking advantage of the following equalities fM = fJM − fJ , fJM =
fL +fD−fDG, fE +fG = f −fBDH −fAC−fJM fH = fK−fL−fD we obtain
a linear equation which after solving gives us (50). �

Corollary 19 The generating function fM for the sequence of numbers |Mn| is
the following:

fM = fL + fD − fDG − fJ (53)

where functions fL, fDG, fD and fJ are defined by (37), (42), (46) and (50).

6 Counting asymptotic densities

In this section we do some calculations concerning singularities of the investi-
gated generating functions. First, let us observe that:

Lemma 20 z0 = 5− 2
√

6 is the only singularity of f, fK , fL and fM located
in |z| ≤ 5− 2

√
6.
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Proof. It is easy to observe the function f(z) has only singularities at z =
5− 2

√
6 and z = 5 + 2

√
6. To make sure the functions fK , fL and fM have

the nearest one at z = 5− 2
√

6, we had to solve the following complicated
equations:

−1 + f − z = 0
S = 0

−8z + (−1− 2f + Y +X)2 = 0
−20 + S(1 + z − f) + z(6 + 4z + f(30 + 50z) = 0

16(fABE − f + fK)fB + (−1 + 2fAC + fL − fDG + 2fB)2 = 0
−3f − 5zf + z + 2 = 0

1 + fD − 2f + fL − fDG = 0

where functions f, fAC , fABE , fK , fDG, fB , fL, fD, X, Y, S
are defined by (11), (19), (15), (21), (42), (31), (37), (46), (40), (41), (38).
To do that we had to use extensively the Mathematica package and it occurred
that all solutions which are different from z = 5− 2

√
6 are situated outside the

disc |z| ≤ 5− 2
√

6. �

To apply the Szegö Lemma we have to have functions which are analytic in the
open disc |z| < 1, and the nearest singularity is at z0 = 1. For that purpose we
are going to calibrate functions f, fK , fL and fM in the following way:

f̂(z) = f
(

z
5−2

√
6

)
f̂K(z) = fK

(
z

5−2
√

6

)
f̂L(z) = fL

(
z

5−2
√

6

)
f̂M (z) = fM

(
z

5−2
√

6

)
.

It is not essential for our task to express the above functions in explicit forms.
We only note that the relations between power series of the appropriate functions
are such as [zn]{f(z)} =

(
[zn]{f̂(z)}

)
(5− 2

√
6)n.

Corollary 21 z0 = 1 is the only singularity of f̂ , f̂K , f̂L and f̂M located in
|z| ≤ 1.

Theorem 22 Expansions of functions f̂ and f̂K in a neighborhood of z = 1 are
as follows:

f̂(z) = f0 + f1
√

1− z + ...

f̂K(z) = k0 + k1

√
1− z + ...

where

f0 =
−4 + 2

√
6

4
, f1 = −1

4

√
−48 + 20

√
6, k0 ≈ 0.06468 . . . , k1 ≈ −0.16307 . . .
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Proof. The above coefficients were found using the Mathematica package. �

Analogously we count the appropriate coefficients of generating functions of
linear tautologies and Medvedev’s ones.

Theorem 23 Expansions of functions f̂L and f̂M in a neighborhood of z = 1
are as follows:

f̂L(z) = l0 + l1
√

1− z + ...

f̂M (z) = m0 +m1

√
1− z + ...

where

l0 ≈ 0.05534 . . . , l1 = −0.14583 . . . , m0 ≈ 0.054511 . . . , m1 ≈ −0.14279 . . .

Now, we can calculate the density of implicational-disjunctional-negational parts
of classical, linear and Medvedev’s logic of one variable. By application of the
Szegö lemma, Lemma 3 and Theorem 4 we get as follows:

Theorem 24

µ(K) = lim
n→∞

|Kn|
|Fn|

= lim
n→∞

(k1

(
1/2
n

)
(−1)n +O(n−2))(5− 2

√
6)n

(f1
(
1/2
n

)
(−1)n +O(n−2))(5− 2

√
6)n

= lim
n→∞

k1

f1
(1 + o(1)) =

k1

f1
≈ 65.56%

Theorem 25

µ(L) = lim
n→∞

|Ln|
|Fn|

= lim
n→∞

(l1
(
1/2
n

)
(−1)n +O(n−2))(5− 2

√
6)n

(f1
(
1/2
n

)
(−1)n +O(n−2))(5− 2

√
6)n

= lim
n→∞

l1
f1

(1 + o(1)) =
l1
f1
≈ 58.63%

Theorem 26

µ(M) = lim
n→∞

|Mn|
|Fn|

= lim
n→∞

(m1

(
1/2
n

)
(−1)n +O(n−2))(5− 2

√
6)n

(f1
(
1/2
n

)
(−1)n +O(n−2))(5− 2

√
6)n

= lim
n→∞

m1

f1
(1 + o(1)) =

m1

f1
≈ 57.41%

The results presented above can be compared with analogous one concerning the
density of implicational-negational parts of linear and classical logics with one
variable. As it was said in Introduction they amount to 39% and 42%. Then
one can notice the operation of disjunction is in fact a truth ‘makers’. From
the other side we can see that the quantitative difference between considered
fragments of Medvedev’s and linear calculi are almost imperceptibly.

Theorem 27 The relative probability of finding a tautology of Medvedev’s logic
among linear ones is about 98 %.
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Proof. From the known asymptotics limn→∞
|Mn|
|Fn| and limn→∞

|Ln|
|Fn| we get

lim
n→∞

|Mn|
|Ln|

=
limn→∞

|Mn|
|Fn|

limn→∞
|Ln|
|Fn|

=
0.5741 . . .
0.5863 . . .

≈ 98%.

�
Finally, the above results can be employed to calculate the size of fragment of
Dummett’s logics inside classical one.

Theorem 28 The relative probability of finding a linear tautology among clas-
sical ones is more then 89 %.

Proof. We already know asymptotics limn→∞
|Ln|
|Fn| and limn→∞

|Kn|
|Fn| therefore

lim
n→∞

|Ln|
|Kn|

=
limn→∞

|Ln|
|Fn|

limn→∞
|Kn|
|Fn|

=
0.5863 . . .
0.6556 . . .

≈ 89%.

�
Let us compare the last result with the one concerning the {→,¬} fragment of
the monadic linear and classical logics. In [2] it is shown the relative probability
of finding a linear tautology among classical ones of such language is more than
93%. This can be commented that the operations of disjunctions (linear and
classical) play an important role in distinction between the considered logics.
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